A Method Combined of Support Vector Machine and F-scores for Customer Classification
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A method combined of F-scores and support vector machine for customer classification was proposed, which can overcome the shortages of the existing customer classification method such as strict hypothesis, poor generalization ability, low prediction accuracy and low learning rate etc., and was applied to the problem of bank credit card customer classification. Empirical results show the validation accuracies of the final model can achieve 95% or more, which concludes that learning and generalization abilities of this model are excellent.

    Reference
    1 Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998,2:121-167.
    2 杨立才,李金亮,姚玉翠,吴晓晴.基于F-score 特征选择和持向量机的P300 识别算法.生物医学工程学杂志,2008, 25(1):23-26.
    3 谢娟英,王春霞,蒋帅,张琰.基于改进的F-score 与支持向机的特征选择方法.计算机应用,2010,30(4):993-996.
    4 郑启鹏,李秀,刘文煌,李兵.支持向量机在银行贷款客户类中的应用研究.微计算机信息,2005,21(11-3):68-70.
    5 李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支向量机的学习策略.计算机学报,2004,27(5):715-719.
    6 Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
    7 Chen YW, Lin CJ. Combining SVMs with Various Feature Selection Strategies. [2009-12-21]. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#5/features.pdf.
    8 Axelberg PGV, Irene Gu YH, Bollen MHJ. Support Vector Machine for Classification of Voltage Disturbances. IEEE Trans. on Power Delivery, 2007,22 (3):1297-1303.
    9 陈启买,陈森平.支持向量机的一种特征选取算法.计算机程与应用,2009,45(23):49-51.
    10 Lin CJ. LIBSVM: a library for support vector machines (Version2.6). [2010-03-18]. http://www.csie.edu.tw/~cjlin/papers/libsvm.pdf.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

段刚龙,黄志文,王建仁.一种F-scores 和SVM 结合的客户分类方法.计算机系统应用,2011,20(1):197-200

Copy
Share
Article Metrics
  • Abstract:2001
  • PDF: 4302
  • HTML: 0
  • Cited by: 0
History
  • Received:May 11,2010
  • Revised:June 11,2010
Article QR Code
You are the first1127182Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063