Transfer Learning Algorithm for Text Classification Based on Clustering
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Transfer learning can improve the performance of classifier effectively, when the training data are out of date, but the new data are very few. In this paper, we propose a transfer learning algorithm for text classification based on clustering. We describe the main idea and the step of the algorithm. Then have experiment on text corpus of Chinese, and compare the algorithm with transfer-unaware algorithm. The experiments demonstrate that this algorithm significantly outperforms the others.

    Reference
    Related
    Cited by
Get Citation

杜俊卫,李爱军.一种基于聚类的文本迁移学习算法.计算机系统应用,2010,19(12):238-241

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 13,2010
  • Revised:May 23,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063