Optimization Algorithm for Multivariate Decision Trees Based on VPRS
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When construct multivariate decision trees, noise data reduced the training efficiency and quality of model, most of the present pruning methods aimed at leaf node to eliminate the influence of noise data, but not pay attention to the disturbed problem of noise data when selected testing attribute. In order to solve the problem, extends the relative core of attributes in rough sets theory to variable precision rough set(VPRS), and uses it for selection of initial variables for decision tree; extends the concept of generalization of one equivalence relation with respect to another one, to relative generalization equivalence relation under mostly-contained condition, and uses it for decision tree initial attribute check;propose an algorithm for multivariate decision tree that can avoid disturbance of noisy data. Finally, validated the algorithm by an experiment.

    Reference
    Related
    Cited by
Get Citation

邱云飞,王光,关晓林,邵良杉.基于VPRS多变量决策树优化算法.计算机系统应用,2010,19(12):136-130

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 03,2010
  • Revised:June 21,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063