Learning Algorithm of Fuzzy Petri Net Based on Result-Feedback
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With regard to the complex structure of Fuzzy Petri Net, this paper improved the hierarchical algorithm of Fuzzy Petri Net without increasing the virtual place and virtual transition, thereby simplifying the learing and training of Fuzzy Petri Net. To speed convergence, this paper proposed a new algorithm for the learning of Fuzzy Petri Net based on the results feedback, namely FBFPN. Firstly, this algorithm layered the pure net hierarchically and established the approximate continuous function of the transition firing, then adjusted the weight, the threshold and the credibility ,finally adjusted the input vector to minimize the error function. Simulation results showed that this algorithm has stronger generalization ability and higher learning efficiency.

    Reference
    Related
    Cited by
Get Citation

严军辉,方路平,肖寒冰,魏渊洁,谢超.基于结果反馈的模糊Petri网学习算法.计算机系统应用,2010,19(12):114-118

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 15,2010
  • Revised:May 13,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063