Modified Naive Bayes Classifier Using Association Rules
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Naive Bayes classification is a kind of simple and effective classification model. However, the performance of this model may be poor due to the assumption on the condition independence. By introducing association rules, this classification model can be improved in two way. On the one hand, the associated relationship between condition attributes can be found out through association rules mining, in order to weaken the independent assumption. On the other hand, Naive Bayes is weighted by computing the confidence of association rules.

    Reference
    Related
    Cited by
Get Citation

陈朝大,梁柱勋,郑士基.一种利用关联规则的改进朴素贝叶斯分类算法.计算机系统应用,2010,19(11):106-109

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 14,2010
  • Revised:May 04,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063