Construct Training Set for Learning to Rank in Web Search
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Learning to rank has become a popular method to build a ranking model for Web search. For the same ranking algorithm, the performance of ranking model depends on a training set. A training sample is constructed by labeling the relevance of a document and a given query by a human. However, the number of queries in Web search is nearly infinite, and the human labeling cost is expensive. Therefore, it is necessary to select a subset of queries to construct an efficient training set. In this paper, a algorithm is developed to select queries by simultaneously taking the query difficulty, density, and diversity into consideration. The experimental results on LETOR and a collected Web search dataset show that the proposed method can lead to a more efficient training set.

    Reference
    Related
    Cited by
Get Citation

王黎,帅建梅.文本搜索排序中构造训练集的一种方法.计算机系统应用,2010,19(10):199-202

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 18,2010
  • Revised:February 26,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063