Framework of Classification Based on Multi-Value Decomposition and Multi-Label Learning
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Classification of multi-valued and multi-labeled data is about a sample which is not only associated with a set of labels, but also with several values that include some attributes. This paper proposes a multi-valued and multi-labeled learning framework that combines multi-value decomposition with multi-label learning (MDML), using four strategies to deal with multi-valued attributes and three classical, multi-label algorithms to learn. Experimental results demonstrate that MDML significantly outperforms the decision tree based method. Meanwhile, combined methods can be applied to various types of datasets.

    Reference
    Related
    Cited by
Get Citation

沈良忠,陈胜凯,胡捷臻.基于多值分解和多类标学习的分类框架设计.计算机系统应用,2010,19(10):187-190

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2010
  • Revised:April 04,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063