Fault Diagnosis of Power Transformer Based on Fuzzy PSO Algorithm
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A fuzzy particle swarm optimization (PSO) method is applied to fault diagnosis of power transformer for the first time. Content of five diagnostic gases dissolved in oil obtained by dissolved gas analysis (DGA) is preprocessed through a special data processing, and six features are extracted for fuzzy PSO algorithm. Then a new objective function is proposed for fuzzy clustering algorithm. Based on the function, PSO algorithm is trained for get the optimized clustering centers of all fault type. With the optimized clustering centers, the distantance of the testing sample to centers are calculated, and then the the membership degree is abtained. Finally, the four fault types of transformer are identified. The algorithms perform well in the testing, and the correct ratios of fault diagnosis reach an average of 92%.

    Reference
    Related
    Cited by
Get Citation

朱苏航,吕干云.基于模糊粒子群算法的变压器故障自动识别①.计算机系统应用,2010,19(8):242-246

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 25,2009
  • Revised:March 21,2010
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063