Prediction of Financial Distress for Listed Companies Based on Wavelet Neural Network
CSTR:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A prediction model of financial distress based on wavelet neural network for listed companies is proposed. The method of selecting financial ratios of companies is analyzed. The self-adaptive learning rate and momentum coefficient are used to avoid the local minimum point in the training process of wavelet neural network. The prediction results show that compared with multiple discriminate analysis, and Logit and Probit models, the prediction with this method is more accurate and type I and type II errors are reduced significantly.

    Reference
    1 张承祥,丁鹏,盛焕烨.基于人工神经网络进行财务危机预警的改进方法.计算机应用与软件, 2008,25(8): 147-148,157.
    2 Beaver WH. Financial ratios as predictors of failure. Journal of Accounting Research, 1966,4(suppl.):71-111.
    3 Altman EI. Financial ratios discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 1968,23(4):589-609.
    4 Martin D. Early warning of bank failure: A logit regression approach. Journal of Banking and Finance, 1977,1(3):249-276.
    5 杨淑娥,王乐平.基于BP神经网络和面板数据的上市公司财务危机预警.系统工程理论与实践, 2007, (2):61-67.
    6 Ding YS, Song XP, Zen YM. Forecasting ?nancial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications, 2008,34(4):3081-3089.
    7 吴世农,卢贤义.我国上市公司财务困境的预测模型研究. 经济研究, 2001,(6):46-55.
    8 Zhang QH, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks,1992,3(11):889-898.
    9 田佳禾,孙士慧,赵仕俊.基于小波神经网络的故障诊断方法研究. 计算机系统应用, 2008,17(5):43-46.
    10 侯逸文,沈炯,李益国.基于小波神经网络的火电单元机组负荷系统建模仿真研究.中国电机工程学报, 2003,23(10):220-224.
    11 韩伟,李杰.基于熵权法的财务危机预警指标选择研究.北京交通大学学报(社会科学版), 2007,6(4):65-68.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

辛秀.基于小波神经网络的上市公司财务危机预测①.计算机系统应用,2010,19(8):191-194

Copy
Share
Article Metrics
  • Abstract:2369
  • PDF: 3221
  • HTML: 0
  • Cited by: 0
History
  • Received:December 15,2009
  • Revised:January 11,2010
Article QR Code
You are the first990450Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063