Application of Subtractive Clustering’s Fuzzy C-Means Categorization to Text Categorization
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, fuzzy C-means categorization optimized by Subtractive clustering is applied to text clustering. First of all, the paper chooses a suitable text collection and deals with word segmentation of the text. Then, it extracts the internal idiocratic words of the documents, and uses word frequency statistics for the text dimensionality reduction processing, to choose the best eigenvector. Finally, after quantifying the text of the non-numerical data, it clusters the collections of text with fuzzy C-means algorithm which is optimized by Subtractive clustering, so as to enhance the effectiveness of text clustering.

    Reference
    Related
    Cited by
Get Citation

王月,柴瑞敏.减聚类的模糊C-均值算法在文本分类中的应用.计算机系统应用,2010,19(3):171-174

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2009
  • Revised:
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063