基于3D融合特征联合神经网络的水声目标识别
作者:
基金项目:

国家自然科学基金青年科学基金(62203405); 山西省应用基础研究计划(20210302124545, 202303021212206, 202202110401015)


Hydroacoustic Target Recognition Based on 3D Fusion Feature Joint Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    面对复杂的海洋环境, 利用舰船辐射噪声进行水声目标特征提取与识别具有极大的挑战性. 本文首先将船舶音频信号的三维梅尔频率倒谱系数(3D dynamic Mel-frequency cepstrum coefficient, 3D-MFCC)特征与三维梅尔谱(3D dynamic Mel-spectrogram, 3D-Mel)特征进行融合作为模型输入, 并基于此提出了一种新的水声目标识别深度神经网络模型, 该模型在卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long short-term memory, LSTM)的串行架构基础上, 用多尺度深度可分离卷积网络(multi-scale depthwise convolutional network, MSDC), 替代了传统的CNN, 并增加了多尺度通道注意力机制(multi-scale channel attention, MSCA). 实验结果表明, 该方法在DeepShip数据集和ShipsEar数据集上的平均识别率分别达到了85.92%和97.32%, 展现了良好的分类效果.

    Abstract:

    Facing the complex marine environment, it is extremely challenging to utilize ship radiated noise for hydroacoustic target feature extraction and recognition. In this study, 3D dynamic Mel-frequency cepstrum coefficient (3D-MFCC) features of ship audio signals are fused with 3D dynamic Mel-spectrogram (3D-Mel) features as model inputs. Based on this, a new deep neural network model for hydroacoustic target recognition is proposed. The model is based on the serial architectures of convolutional neural network (CNN) and long short-term memory (LSTM). Here, the traditional CNN is replaced by multi-scale depthwise convolutional network (MSDC), and multi-scale channel attention (MSCA) is added. The experimental results show that the average recognition rate of this method on DeepShip and ShipsEar datasets reaches 85.92% and 97.32% respectively, which demonstrates a good classification effect.

    参考文献
    [1] 章业成. 水声目标识别技术的现状与发展. 电子技术与软件工程, 2019(18): 97–98.
    [2] Zhang GJ, Wang PP, Wang P. Feature extraction of underwater target based on the time-frequency analysis. Proceedings of the 2nd International Conference on Signal Processing Systems. Dalian: IEEE, 2010. V3-208–V3-211.
    [3] Hackman RH, Arnold H, Reagan J. Active acoustic classification of underwater targets based on time-frequency analyses. The Journal of the Acoustical Society of America, 1992, 91(S4): 2446.
    [4] Yang S, Jin AQ, Zeng XY, et al. Underwater acoustic target recognition based on sub-band concatenated Mel spectrogram and multidomain attention mechanism. Engineering Applications of Artificial Intelligence, 2024, 133: 107983.
    [5] Li J, Wang BX, Cui XR, et al. Underwater acoustic target recognition based on attention residual network. Entropy, 2022, 24(11): 1657.
    [6] Liu G M, Sun C, Yang YX. Target feature extraction for passive sonar based on two cepstrums. Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE, 2008. 539–542.
    [7] Jeevan M, Dhingra A, Hanmandlu M, et al. Robust speaker verification using GFCC based i-vectors. Proceedings of the 2016 International Conference on Signal, Networks, Computing, and Systems. New Delhi: Springer, 2016. 85–91.
    [8] Seok J, Bae K. Target classification using features based on fractional Fourier transform. IEICE Transactions on Information and Systems, 2014, E97.D(9): 2518–2521.
    [9] Azimi-Sadjadi MR, Yao D, Huang Q, et al. Underwater target classification using wavelet packets and neural networks. IEEE Transactions on Neural Networks, 2000, 11(3): 784–794.
    [10] Copiaco A, Ritz C, Abdulaziz N, et al. A study of features and deep neural network architectures and hyper-parameters for domestic audio classification. Applied Sciences, 2021, 11(11): 4880.
    [11] Lim T, Bae K, Hwang C, et al. Classification of underwater transient signals using MFCC feature vector. Proceedings of the 9th International Symposium on Signal Processing and Its Applications. Sharjah: IEEE, 2007. 1–4.
    [12] Zhang LY, Wu D, Han X, et al. Feature extraction of underwater target signal using Mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors, 2016, 2016(1): 7864213.
    [13] Liu F, Shen TS, Luo ZL, et al. Underwater target recognition using convolutional recurrent neural networks with 3D mel-spectrogram and data augmentation. Applied Acoustics, 2021, 178: 107989.
    [14] 徐小华, 周长兵, 胡忠旭, 等. 轻量级深度神经网络模型适配边缘智能研究综述. 计算机科学, 2024, 51(7): 257–271.
    [15] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507.
    [16] 王念滨, 何鸣, 王红滨, 等. 适用于水下目标识别的快速降维卷积模型. 哈尔滨工程大学学报, 2019, 40(7): 1327–1333.
    [17] 张少康, 王超, 田德艳, 等. 长短时记忆网络水下目标噪声智能识别方法. 舰船科学技术, 2019, 41(23): 181–185.
    [18] 张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述. 电子与信息学报, 2023, 45(11): 4190–4202.
    [19] 任晨曦, 王黎明, 韩星程, 等. 基于联合神经网络的水声目标识别方法. 舰船科学技术, 2022, 44(1): 136–141.
    [20] Satheesh Chandran C, Suraj K, Mujeeb A, et al. Novel class detection of underwater targets using self-organizing neural networks. Proceedings of the 2015 IEEE Underwater Technology (UT). Chennai: IEEE, 2015. 1–5.
    [21] Hu G, Wang KJ, Liu LL. Underwater acoustic target recognition based on depthwise separable convolution neural networks. Sensors, 2021, 21(4): 1429.
    [22] 张伟. 基于注意力机制的水声目标识别技术研究 [硕士学位论文]. 镇江: 江苏科技大学, 2023.
    [23] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [24] Wang QL, Wu BG, Zhu PF, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 11531–11539.
    [25] Xie Y, Ren J, Xu J. Underwater-art: Expanding information perspectives with text templates for underwater acoustic target recognition. The Journal of the Acoustical Society of America, 2022, 152(5): 2641–2651.
    [26] Irfan M, Jiangbin Z, Ali S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification. Expert Systems with Applications, 2021, 183: 115270.
    [27] Ren J, Xie Y, Zhang X, et al. UALF: A learnable front-end for intelligent underwater acoustic classification system. Ocean Engineering, 2022, 264: 112394.
    [28] Zhu P, Zhang Y, Huang Y, et al. Underwater acoustic target recognition based on spectrum component analysis of ship radiated noise. Applied Acoustics, 2023, 211: 109552.
    [29] Tian SZ, Chen DB, Fu Y, et al. Joint learning model for underwater acoustic target recognition. Knowledge-based Systems, 2023, 260: 110119.
    [30] Xu K, Xu Q, You K, et al. Self-supervised learning–based underwater acoustical signal classification via mask modeling. The Journal of the Acoustical Society of America, 2023, 154(1): 5–15.
    [31] Zhang Y, Zeng Q. MSLEFC: A low-frequency focused underwater acoustic signal classification and analysis system. Engineering Applications of Artificial Intelligence, 2023, 123: 106333.
    [32] Sadeghi M, Gholamalinejad H, Ali M. A new database for underwater sound recognition using a nonlinear support vector machine. Proceedings of the 2019 International Conference on Computing, Electronics and Communications Engineering (ICCECE). London: IEEE, 2019. 169–172.
    [33] Liu C, Hong F, Feng H, et al. Underwater qcoustic target recognition based on dual attention networks and multiresolution convolutional neural networks. OCEANS 2021: San Diego-Porto. San Diego: IEEE, 2021. 1–5.
    [34] Chen Z, Xie G, Chen M, et al. Model for underwater acoustic target recognition with attention mechanism based on residual concatenate. Journal of Marine Science and Engineering, 2024, 12(1): 24.
    [35] Feng H, Chen X, Wang R, et al. Underwater acoustic target recognition method based on WA-DS decision fusion. Applied Acoustics, 2024, 217: 109851.
    [36] Qi P, Yin G, Zhang L. Underwater acoustic target recognition using RCRNN and wavelet-auditory feature. Multimed Tools Applications, 2024, 83(16): 47295–47317.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许玮婷,赵英亮,冯思奇,韩星程,贾彩琴.基于3D融合特征联合神经网络的水声目标识别.计算机系统应用,2025,34(3):72-84

复制
分享
文章指标
  • 点击次数:76
  • 下载次数: 917
  • HTML阅读次数: 47
  • 引用次数: 0
历史
  • 收稿日期:2024-09-01
  • 最后修改日期:2024-10-10
  • 在线发布日期: 2025-01-21
文章二维码
您是第11124139位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号