基于频率与注意力机制的图像去雾算法
作者:
基金项目:

国家自然科学基金(41975183)


Image Dehazing Algorithm Based on Frequency and Attention Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于大气雾和气溶胶的存在, 图像能见度显著下降且色彩失真, 给高级图像识别带来极大困难. 现有的图像去雾算法常存在过度增强、细节丢失和去雾不充分等问题. 针对过度增强和去雾不充分的问题, 本文提出了一种基于频率和注意力机制的图像去雾算法(frequency and attention mechanism of the image dehazing network, FANet). 该算法采用编码器-解码器结构, 通过构建双分支频率提取模块获取全局和局部的高低频信息. 构建频率融合模块调整高低频信息的权重占比, 并在下采样过程中引入附加通道-像素模块和通道-像素注意力模块, 以优化去雾效果. 实验结果显示, FANet在SOTS-indoor数据集上的PSNR和SSIM分别为40.07 dB和0.9958, 在SOTS-outdoor数据集上分别为39.77 dB和0.9958. 同时, 该算法也在HSTS和Haze4k测试集上取得了不错的结果, 与其他去雾算法相比有效缓解了颜色失真和去雾不彻底等问题.

    Abstract:

    Atmospheric fog and aerosols can significantly reduce visibility and distort colors in images, bringing great difficulties to advanced image recognition. Existing image dehazing algorithms often face problems such as excessive enhancement, loss of details, and insufficient dehazing. To avoid excessive enhancement and insufficient dehazing, this study proposes an image dehazing algorithm based on frequency and attention mechanisms. The algorithm adopts an encoder-decoder structure and constructs a dual-branch frequency extraction module to obtain both global and local high and low-frequency information. A frequency fusion module is then constructed to adjust the weight proportions of the high and low-frequency information. To optimize the dehazing effect, the algorithm introduces an additional channel-pixel module and a channel-pixel attention module during down sampling. Experimental results show that FANet achieves a PSNR of 40.07 dB and an SSIM of 0.9958 on the SOTS-indoor dataset, and a PSNR of 39.77 dB and an SSIM of 0.9958 on the SOTS-outdoor dataset. The proposed algorithm also achieves good results on the HSTS and Haze4k test sets. It effectively alleviates color distortion and incomplete dehazing compared with other dehazing algorithms.

    参考文献
    [1] 苏彤, 王颖, 邓启扬, 等. 基于YOLOv5改进的雾天行人与车辆检测算法. 系统仿真学报, 2024, 36(10): 2413–2422.
    [2] 刘姝廷, 孙诚志, 娄浩云, 等. 基于直方图均衡化和Retinex的图像去雾研究. 信息与电脑(理论版), 2023, 35(15): 172–175.
    [3] Rajput GS, Rahman ZU. Hazard detection on runways using image processing techniques. Proceedings of the Enhanced and Synthetic Vision 2008. Orlando: SPIE, 2008. 69570D.
    [4] 高原原, 胡海苗. 基于多子块协同单尺度Retinex的浓雾图像增强. 北京航空航天大学学报, 2019, 45(5): 944–951.
    [5] Stark JA. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889–896.
    [6] McCartney EJ. Optics of the Atmosphere: Scattering by Molecules and Particles. New York: Wiley, 1976.
    [7] Nayar SK, Narasimhan SG. Vision in bad weather. Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999. 820–827.
    [8] He KM, Sun J, Tang XO. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353.
    [9] 杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法. 电子与信息学报, 2020, 42(3): 755–763.
    [10] Zhu YY, Tang GY, Zhang XY, et al. Haze removal method for natural restoration of images with sky. Neurocomputing, 2018, 275: 499–510.
    [11] Yang Y, Wang CY, Liu RS, et al. Self-augmented unpaired image dehazing via density and depth decomposition. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 2027–2036.
    [12] Zhu QS, Mai JM, Shao L. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533.
    [13] Tan RT. Visibility in bad weather from a single image. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008. 1–8.
    [14] Cai BL, Xu XM, Jia K, et al. DehazeNet: An end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198.
    [15] Li BY, Peng XL, Wang ZY, et al. AOD-Net: All-in-one dehazing network. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 4780–4788.
    [16] Yeh CH, Huang CH, Kang LW. Multi-scale deep residual learning-based single image haze removal via image decomposition. IEEE Transactions on Image Processing, 2020, 29: 3153–3167.
    [17] Yuan KL, Wei JG, Lu WH, et al. Single image dehazing via NIN-DehazeNet. IEEE Access, 2019, 7: 181348–181356.
    [18] Chen WT, Fang HY, Ding JJ, et al. PMHLD: Patch map-based hybrid learning DehazeNet for single image haze removal. IEEE Transactions on Image Processing, 2020, 29: 6773–6788.
    [19] Bhola A, Sharma T, Verma NK. DCNet: Dark channel network for single-image dehazing. Machine Vision and Applications, 2021, 32(3): 62.
    [20] Zhang H, Patel VM. Densely connected pyramid dehazing network. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3194–3203.
    [21] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Proceedings of the 2014 Coference on Neural Information Processing Systems. 2014. 1–9.
    [22] Chen DD, He MM, Fan QN, et al. Gated context aggregation network for image dehazing and deraining. Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2019. 1375–1383.
    [23] Engin D, Genc A, Ekenel HK. Cycle-dehaze: Enhanced CycleGAN for single image dehazing. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018. 938–9388.
    [24] Zhang J, Tao DC. FAMED-Net: A fast and accurate multi-scale end-to-end dehazing network. IEEE Transactions on Image Processing, 2020, 29: 72–84.
    [25] Li YN, Miao QG, Ouyang WL, et al. LAP-Net: Level-aware progressive network for image dehazing. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 3275–3284.
    [26] Qin X, Wang ZL, Bai YC, et al. FFA-Net: Feature fusion attention network for single image dehazing. Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020. 11908–11915.
    [27] Wu HY, Qu YY, Lin SH, et al. Contrastive learning for compact single image dehazing. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 10546–10555.
    [28] Ji HB, Feng X, Pei WJ, et al. U2-former: A nested u-shaped Transformer for image restoration. arXiv:2112.02279, 2021.
    [29] Song YD, Zhou Y, Qian H, et al. Rethinking performance gains in image dehazing networks. arXiv:2209.11448, 2022.
    [30] Zheng Y, Zhan JH, He SF, et al. Curricular contrastive regularization for physics-aware single image dehazing. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 5785–5794.
    [31] Lu LP, Xiong Q, Chu DF, et al. MixDehazeNet: Mix structure block for image dehazing network. arXiv:2305.17654, 2023.
    [32] Cui YN, Tao Y, Bing ZS, et al. Selective frequency network for image restoration. Proceedings of the 11th International Conference on Learning Representations. Kigali: ICLR, 2022.
    [33] Cui YN, Ren WQ, Cao XC, et al. Image restoration via frequency selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 1093–1108.
    [34] Cui YN, Ren WQ, Knoll A. Omni-kernel network for image restoration. Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2024. 1426–1434.
    [35] Cui YN, Knoll A. Dual-domain strip attention for image restoration. Neural Networks, 2024, 171: 429–439.
    [36] Cui YN, Tao Y, Jing LX, et al. Strip attention for image restoration. Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2023. 645–653.
    [37] Liu XH, Ma YR, Shi ZH, et al. GridDehazeNet: Attention-based multi-scale network for image dehazing. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 7313–7322.
    [38] Dong H, Pan JS, Xiang L, et al. Multi-scale boosted dehazing network with dense feature fusion. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 2154–2164.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王军,孟儒君,程勇.基于频率与注意力机制的图像去雾算法.计算机系统应用,2025,34(1):161-170

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 541
  • HTML阅读次数: 356
  • 引用次数: 0
历史
  • 收稿日期:2024-06-19
  • 最后修改日期:2024-07-10
  • 在线发布日期: 2024-11-28
文章二维码
您是第12824967位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号