基于深度学习的微观剩余油赋存形态分类识别综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61702093); 黑龙江省自然科学基金(LH2022F006)


Survey on Classification and Identification of Microscopic Remaining Oil Occurrence Forms Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微观剩余油赋存形态分类识别研究在剩余油开采领域发挥着至关重要的作用, 其对油田提高采收率具有重要的意义. 近年来, 该领域的大量研究通过引入深度学习方法来推动微观剩余油识别技术的发展, 但深度学习技术在微观剩余油识别领域尚未形成一个较为统一的框架, 也没有一个规范化的操作流程. 为了给今后的研究人员提供指导, 对目前的剩余油识别方法进行梳理, 从图像采集及类别划分标准、图像处理、剩余油识别方法等方面介绍了基于机器视觉的微观剩余油识别技术. 将剩余油识别方法分为基于传统和基于深度学习的识别方法, 传统识别方法分为基于人工特征提取和基于机器学习分类, 基于深度学习的识别方法划分为单阶段和两阶段方法, 并对其中数据增强、预训练、图像分割和图像分类方面进行详细归纳. 最后, 讨论了将深度学习应用于微观剩余油识别领域面临的挑战, 并对未来的发展趋势进行了展望.

    Abstract:

    The research on the classification and identification of microscopic residual oil occurrence states plays a vital role in residual oil exploitation and is of great significance for improving oil field recovery. In recent years, a large number of studies in this field have promoted the development of technologies for identifying microscopic residual oil by introducing deep learning. However, deep learning has not yet established a unified framework for microscopic residual oil identification, nor has it formed a standardized operation process. To guide future research, this study reviews existing methods for identifying residual oil and introduces the identification technologies for microscopic residual oil based on machine vision from several aspects, including image acquisition and classification standards, image processing, and residual oil identification methods. Residual oil identification methods are categorized into traditional and deep learning-based methods. The traditional methods are further divided into those based on manual feature extraction and those based on machine learning classification. The deep learning-based methods are divided into single-stage and two-stage methods. Detailed summaries are provided for data enhancement, pre-training, image segmentation, and image classification. Finally, this study discusses the challenges of applying deep learning to microscopic residual oil identification and explores future development trends.

    参考文献
    相似文献
    引证文献
引用本文

赵娅,管玉,贾迪.基于深度学习的微观剩余油赋存形态分类识别综述.计算机系统应用,2025,34(1):26-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-09
  • 最后修改日期:2024-07-03
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号