基于PROV和智能合约的电力市场清算溯源模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司科技项目(5108-202218280A-2-289-XG); 江苏省研究生科研与实践创新计划(SJCX23_0410)


Electricity Market Clearing Provenance Model Based on PROV and Smart Contracts
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在当前的电力市场中, 现货日清数据量已达百万或千万级. 随着交易活动的增加和市场结构的复杂化, 确保交易数据的完整性、透明性和可追溯性是我国现阶段市场清算领域待研究的关键问题. 为此, 研究提出了一种基于PROV模型和智能合约的电力市场清算数据溯源方法, 旨在通过智能合约自动化存储及更新溯源信息, 从而提高清算过程的透明度和参与方信任. 本方法利用PROV模型中的实体、活动和代理等元素, 结合区块链技术的可层次存储及不可篡改性, 记录和追踪电力市场中的交易活动和规则变更. 本方法不仅增强了数据的透明度和市场参与方的信任度, 也优化了数据管理和存储策略, 降低了操作成本. 此外, 本方法为电力市场清算提供了合规性证明, 帮助市场参与方满足日益增长的法规要求.

    Abstract:

    In the current electricity market, the volume of daily spot market clearing data has reached millions or tens of millions. With the increase in trading activities and the complexity of the market structure, ensuring the integrity, transparency, and traceability of trading data has become a key issue to be studied in the field of market clearing in China. Therefore, this study proposes a data provenance method for power market clearing based on the PROV model and smart contracts, aiming to automate the storage and updating of provenance information through smart contracts to improve the transparency of the clearing process and the trust of the participants. The proposed method utilizes the elements of entities, activities, and agents in the PROV model, combined with the hierarchical storage and immutability of blockchain technology, to record and track trading activities and rule changes in the electricity market. The method not only enhances data transparency and trust among market participants but also optimizes data management and storage strategies, reducing operational costs. In addition, the method provides proof of compliance for power market clearing, helping market participants meet increasing regulatory requirements.

    参考文献
    相似文献
    引证文献
引用本文

徐占洋,侍虹言,岳紫玉,赵鸿,许健,王哲.基于PROV和智能合约的电力市场清算溯源模型.计算机系统应用,2025,34(1):58-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-04
  • 最后修改日期:2024-06-28
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号