基于图卷积时空生成对抗网络的城市交通估计
作者:
基金项目:

国家自然科学基金(62173171)


Urban Traffic Estimation Based on Graph Convolution Spatiotemporal GAN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在城市道路部署前估计路网的交通流量极具挑战性, 为了解决这个难题, 提出了一种新的条件城市交通生成对抗网络(Curb-GAN)模型, 利用条件生成对抗网络(CGAN)生成城市交通流量数据. 首先, 把路网各节点的距离关系和外部特征信息作为条件处理, 来控制生成结果; 其次, 利用图卷积网络(GCN)捕获路网的空间自相关性, 利用自注意力机制(SA)和门控循环单元(GRU)捕获不同时隙交通的时间依赖性; 最后, 由训练好的生成器生成交通流量数据. 在两个真实时空数据集上的大量实验表明, Curb-GAN模型的估计精度优于主要的基线方法, 并且可以产生更有意义的估计.

    Abstract:

    It is very challenging to estimate the traffic flow before urban road deployment. To solve this problem, this study proposes a new conditional urban traffic generating adversarial network (Curb-GAN) model, which utilizes a conditional generating adversarial network (CGAN) to generate urban traffic flow data. Firstly, the distance relationship and external feature information of each node of the road network are treated as conditions to control the generated results. Secondly, the spatial autocorrelation of the road network is captured by the graph convolutional network (GCN), and the time dependence of traffic in different time slots is captured by the self-attention (SA) mechanism and gated cycle unit (GRU). Finally, the trained generator generates traffic flow data. A large number of experiments on two real spatiotemporal datasets show that the estimation accuracy of the Curb-GAN model is superior to the main baseline methods and can produce more meaningful estimates.

    参考文献
    [1] Castro PS, Zhang DQ, Li SJ. Urban traffic modelling and prediction using large scale taxi GPS traces. Proceedings of the 10th International Conference on Pervasive Computing. Newcastle: Springer, 2012. 57–72.
    [2] Herring R, Hofleitner A, Abbeel P, et al. Estimating arterial traffic conditions using sparse probe data. Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Funchal: IEEE, 2010. 929–936.
    [3] Yuan J, Zheng Y, Zhang CY, et al. T-drive: Driving directions based on taxi trajectories. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose: ACM, 2010. 99–108.
    [4] 谢宏, 刘敏, 陈淑荣. 基于ICA和SVM的道路网短时交通流量预测方法. 计算机应用, 2009, 29(9): 2550–2553.
    [5] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444.
    [6] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1097–1105.
    [7] Zhang JB, Zheng Y, Qi DK. Deep spatio-temporal residual networks for citywide crowd flows prediction. Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017. 1655–1661.
    [8] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
    [9] Cho K, Van Merri?nboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014. 1724–1734.
    [10] Yu B, Yin HT, Zhu ZX. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2017. 3634–3640.
    [11] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR, 2017.
    [12] Zhao L, Song YJ, Zhang C, et al. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848–3858.
    [13] Li YG, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
    [14] 徐丽, 符祥远, 李浩然. 基于门控卷积的时空交通流预测模型. 计算机应用, 2023, 43(9): 2760–2765.
    [15] Zhang XY, Huang C, Xu Y, et al. Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, 2020. 1853–1862.
    [16] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv:1706.03762, 2017.
    [17] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv:1411.1784, 2014.
    [18] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems—Vol. 2. Montreal: MIT Press, 2014. 2672–2680.
    [19] Yu LT, Zhang WN, Wang J, et al. SeqGAN: Sequence generative adversarial nets with policy gradient. Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017. 2852–2858.
    [20] Scarselli F, Gori M, Tsoi AC, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80.
    [21] Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks. Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
    [22] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014.
    [23] Mogren O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv:1611.09904, 2016.
    [24] Yu AW, Dohan D, Luong MT, et al. QANet: Combining local convolution with global self-attention for reading comprehension. Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
    [25] Castán-Lascorz MA, Jiménez-Herrera P, Troncoso A, et al. A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting. Information Sciences, 2022, 586: 611–627.
    [26] Tan CQ, Sun FC, Zhang WC, et al. Multimodal classification with deep convolutional-recurrent neural networks for electroencephalography. Proceedings of the 24th International Conference on Neural Information Processing. Guangzhou: Springer, 2017. 767–776.
    [27] Ott J, Lin ZH, Zhang Y, et al. Recurrent neural networks with limited numerical precision. arXiv:1608.06902, 2016.
    [28] Qin Y, Song DJ, Cheng HF, et al. A dual-stage attention-based recurrent neural network for time series prediction. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: AAAI Press, 2017. 2627–2633.
    [29] Hang R, Li MX. Spatial-temporal adaptive graph convolutional network for skeleton-based action recognition. Proceedings of the 16th Asian Conference on Computer Vision. Macao: Springer, 2022. 172–188.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许明,邬天财,金海波.基于图卷积时空生成对抗网络的城市交通估计.计算机系统应用,2024,33(9):123-131

复制
分享
文章指标
  • 点击次数:402
  • 下载次数: 1184
  • HTML阅读次数: 917
  • 引用次数: 0
历史
  • 收稿日期:2024-03-25
  • 最后修改日期:2024-04-19
  • 在线发布日期: 2024-07-26
文章二维码
您是第12828424位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号