多模态深层次高置信度融合跟踪算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金面上项目(2023JCYB194, 2024JCYBMS169); 西安航空学院校级科研基金(2023KY1205)


Multi-modal Deep-level High-confidence Fusion Tracking Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决单目标跟踪中因目标外观及环境变化导致的跟踪失败问题, 提出一种多模态深层次高置信度融合跟踪算法. 首先构建目标颜色模型和基于双线性插值HOG特征形状模型的高维度多模态模型, 之后对候选目标利用粒子滤波进行搜索. 针对模型融合的难点, 通过准确量化形状和颜色模型多种置信度并设计高置信度融合准则, 以实现该多模态模型中不同置信度的深层次自适应加权平衡融合. 最后针对模型更新参数固定的问题, 设计非线性分级平衡更新策略. 经过在OTB-2015数据集上的测试, 发现该算法的平均CLEOS在所有参照算法表现中均表现最佳, 其值分别为30.57和0.609. 此外, 其FPS为15.67, 满足了跟踪算法在一般情况下的实时性要求. 在某些常见的特定场景中, 其精确率、成功率指标在多数情况下的表现也超过了同类顶尖算法.

    Abstract:

    This study proposes a multi-modal deep-level high-confidence fusion tracking algorithm in response to the tracking failure issues caused by changes in target appearance and environment in single-target tracking applications. First, a high-dimensional multi-modal model is constructed utilizing the target’s color model combined with a shape model based on bilinear interpolation HOG features. Then, candidate targets are searched using particle filtering. The challenge posed by model fusion is addressed by scrupulously quantifying a range of confidences in shape and color models. This is followed by the introduction of a high-confidence fusion criterion, which enables a deeply-adaptive, weighted, and balanced fusion with different confidence levels in the multi-modal model. To counter the issue of static model update parameters, a nonlinear, graded balanced update strategy is designed. Upon testing on the OTB-2015 dataset, this algorithm’s average CLE and OS metrics demonstrated superior performance compared to all reference algorithms, with values of 30.57 and 0.609, respectively. Moreover, with an FPS of 15.67, the algorithm fulfills the real-time operation requirements inherent in tracking algorithms under most conditions. Notably, in some common specific scenarios, the accuracy and success rate of the algorithm also outperform the top-tier algorithms in most cases.

    参考文献
    相似文献
    引证文献
引用本文

高伟,薛杉,胡秋霞,李嘉琦,田杰,饶晔,杨举.多模态深层次高置信度融合跟踪算法.计算机系统应用,2024,33(9):153-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-25
  • 最后修改日期:2024-04-19
  • 录用日期:
  • 在线发布日期: 2024-07-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号