基于多标签语义分割的硬笔字笔画提取
作者:

Stroke Extraction for Chinese Handwriting Character Based on Multi-label Semantic Segmentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    汉字作为中华文化的载体, 因其复杂的结构区别于其他文字. 笔画作为汉字的基本单元, 在硬笔字评价中起到至关重要的作用. 正确提取笔画, 是硬笔字评价的首要步骤. 现有的笔画提取方法多数是基于规则的, 由于汉字的复杂性, 这些规则通常无法顾及所有特征, 且在评价时无法根据笔顺等信息与模板字笔画匹配. 为了解决这些问题, 该文将笔画提取转化为多标签语义分割问题, 提出了多标签语义分割模型(M-TransUNet), 利用深度卷积模型以汉字为单位任务进行训练, 保留了笔画原有结构, 避免了笔画段组合的二义性, 同时得到了硬笔字的笔顺, 有利于笔画评价等下游任务. 由于硬笔字图像只分为前景和背景, 没有额外颜色信息, 所以更容易产生FP (false positive)分割噪声. 为解决此问题, 本文还提出了一种针对笔画分割结果的局部平滑策略(local smooth strategy on stroke, LSSS), 淡化噪声的影响. 最后, 本文对M-TransUNet的分割性能以及效率进行了实验, 证明了本文算法在很小性能损失的情况下, 极大地提升了效率. 同时对LSSS算法进行了实验, 证明其在FP噪声消除的有效性.

    Abstract:

    As the carrier of Chinese culture, Chinese characters are distinguished from other scripts by their complex structure. As the basic unit of Chinese characters, strokes play a vital role in the evaluation of Chinese handwriting characters. The correct extraction of strokes is the primary step in evaluating Chinese handwriting characters. Most existing stroke extraction methods are based on specific rules, and due to the complexity of Chinese characters, these rules usually cannot take into account all the features, and cannot match the strokes of template characters based on stroke order and other information during evaluation. To address these issues, this study transforms stroke extraction into a multi-label semantic segmentation problem and proposes a multi-label semantic segmentation model (M-TransUNet), which utilizes a deep convolutional model to train with Chinese characters as a unit task, retaining the original structure of the strokes and avoiding ambiguity in stroke segment combinations. At the same time, the stroke order of the Chinese handwriting characters is obtained, which is conducive to downstream tasks, such as stroke evaluations. Since the handwriting images are only divided into foreground and background without additional color information, they are more prone to generating FP segmentation noise. To solve this problem, this study also proposes a local smooth strategy on strokes (LSSS) for the stroke segmentation results to dilute the impact of noise. Finally, this study conducted experiments on the segmentation performance and efficiency of M-TransUNet, demonstrating that the algorithm significantly enhances efficiency with minimal performance loss. Additionally, experiments were carried out on the LSSS algorithm to demonstrate its effectiveness in eliminating FP noise.

    参考文献
    [1] Xu ZY, Liang Y, Zhang QN, et al. Decomposition and matching: Towards efficient automatic Chinese character stroke extraction. Proceedings of the 2016 Visual Communications and Image Processing. Chengdu: IEEE, 2016. 1–4.
    [2] 范勇峰, 李成城, 林民, 等. 基于局部信息的手写汉字笔画提取. 内蒙古师范大学学报(自然科学汉文版), 2023, 52(2): 181–188.
    [3] 荀恩东, 吕晓晨, 安维华, 等. 面向书写教学的手写汉字图像笔画还原. 北京大学学报(自然科学版), 2015, 51(2): 241–248.
    [4] Liao CW, Huang JS. Stroke segmentation by Bernstein-Bezier curve fitting. Pattern Recognition, 1990, 23(5): 475–484.
    [5] Fan KC, Wu WH. A run-length-coding-based approach to stroke extraction of Chinese characters. Pattern Recognition, 2000, 33(11): 1881–1895.
    [6] Lin F, Tang XO. Off-line handwritten Chinese character stroke extraction. Proceedings of the 2002 International Conference on Pattern Recognition. Quebec City: IEEE, 2002. 249–252.
    [7] 李建华, 王宏, 闫文芝, 等. 一种新的汉字细化和笔画提取方法. 第六届全国信息获取与处理学术会议论文集(1). 北京: 《仪器仪表学报》杂志社, 2008. 230–233.
    [8] 刘相聪, 李壮峰, 姜杰, 等. 基于CPD算法与笔段权重的楷体字笔画提取研究. 计算机应用与软件, 2022, 39(8): 204–212, 219.
    [9] Cao RN, Tan CL. A model of stroke extraction from Chinese character images. Proceedings of the 15th International Conference on Pattern Recognition. Barcelona: IEEE, 2000. 368–371.
    [10] 史伟, 傅彦, 陈安龙, 等. 一种动态的汉字笔段提取方法. 计算机应用研究, 2008, 25(7): 1998–2000.
    [11] 程立, 王江晴, 李波, 等. 基于轮廓的汉字笔画分离算法. 计算机科学, 2013, 40(7): 307–311.
    [12] 章夏芬, 刘佳岩. 用爬虫法提取书法笔画. 计算机辅助设计与图形学学报, 2016, 28(2): 301–309.
    [13] Liu LZ, Lin KY, Huang SX, et al. Instance segmentation for Chinese character stroke extraction, datasets and benchmarks. arXiv:2210.13826, 2022.
    [14] He KM, Gkioxari G, Dollár P, et al. Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2961–2969.
    [15] 张巍, 张筱, 万永菁. 基于条件生成对抗网络的书法字笔画分割. 自动化学报, 2022, 48(7): 1861–1868.
    [16] Isola P, Zhu JY, Zhou TH, et al. Image-to-image translation with conditional adversarial networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 1125–1134.
    [17] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [18] Chen JN, Lu YY, Yu QH, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306, 2021.
    [19] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [20] Zou BJ, Dai YL, He Q, et al. Multi-label classification scheme based on local regression for retinal vessel segmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(6): 2586–2597.
    [21] 阳平, 娄海涛, 胡正坤. 一种基于骨架的篆字笔划分割方法. 计算机科学, 2013, 40(2): 297–300.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余嘉云,李丁宇,徐占洋,王晶弘,林巍.基于多标签语义分割的硬笔字笔画提取.计算机系统应用,2024,33(9):174-182

复制
分享
文章指标
  • 点击次数:475
  • 下载次数: 1367
  • HTML阅读次数: 1048
  • 引用次数: 0
历史
  • 收稿日期:2024-01-11
  • 最后修改日期:2024-02-29
  • 在线发布日期: 2024-07-30
文章二维码
您是第12826859位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号