摘要:云及其阴影的有效分割是遥感图像处理领域中重要的问题, 它对于地表特征提取、气候检测、大气校正等有很大帮助. 然而云和云影遥感图像特征复杂, 云分布多样不规则, 且边界信息模糊易受背景干扰等特点, 导致其特征难以准确提取, 也少有专门为其设计的网络. 针对以上问题, 本文提出一种ViT (vision Transformer)和D-UNet双路网络. 本文网络分为两个分支: 一路是基于卷积的局部特征提取模块, 在D-UNet的膨胀卷积模块基础上, 引入深度可分离卷积, 提取多尺度特征的同时, 减少参数; 另一路通过ViT在全局上理解上下文语义, 加深对整体特征提取. 两支路间存在信息交互, 完善提取的特征信息. 最后通过独特设计的融合特征解码器, 进行上采样, 减少信息丢失. 模型在自建的云和云影数据集以及HRC_WHU公开数据集上取得优越的性能, 在MIoU指标上分别领先次优模型0.52%和0.44%, 达到了92.05%和85.37%.