融合知识点关系的深度记忆网络知识追踪
作者:
基金项目:

国家自然科学基金(61973180, 62172249, 61773208); 山东省产教融合研究生联合培养示范基地项目(2020-19)


Deep Memory Network Incorporating Knowledge Point Relationship for Knowledge Tracing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    知识追踪任务旨在通过对学生历史学习数据实时准确地追踪学生知识状态, 并预测学生未来的答题表现. 针对当前研究忽略了题目涵盖知识点中复杂的高阶关系的问题, 提出一种融合知识点关系的深度记忆网络知识追踪模型(deep memory network knowledge tracing model incorporating knowledge point relationships, HRGKT). 首先, HRGKT使用知识点关系图定义图中节点之间的关系信息, 表示知识点之间的丰富信息. 使用GAT获取两者之间的高阶关系. 然后, 学习过程中存在着遗忘, HRGKT综合考虑4个影响知识遗忘的因素来更准确地追踪学生知识状态. 最后, 根据真实在线教育数据集上的实验比较结果, 与当前知识追踪模型相比, HRGKT在追踪学生知识掌握状态方面表现更加准确, 并且具备更好的预测性能.

    Abstract:

    The knowledge tracing task aims to accurately track students’ knowledge status in real time and predict students’ future performance by analyzing their historical learning data. This study proposes a deep memory network knowledge tracing model incorporating knowledge point-relationships (HRGKT) to address the problem that current research has neglected complex higher-order relationships in the knowledge points covered by the questions. Firstly, HRGKT uses the knowledge point relationship graph to define the relationship information between nodes in the graph, which represents the rich information between knowledge points. GAT is used to obtain higher-order relationships between them. Then, forgetting exists in the learning process, and HRGKT considers four factors affecting knowledge forgetting to track students’ knowledge status more accurately. Finally, based on the experimental comparison results on real online education datasets, HRGKT performs more accurately in tracing students’ knowledge mastery status and has better prediction performance than current knowledge tracing models.

    参考文献
    [1] Injadat M, Moubayed A, Nassif B, et al. Systematic ensemble model selection approach for educational data mining. Knowledge-based Systems, 2020, 200: 105992.
    [2] Ingkavara T, Panjaburee P, Srisawasdi N, et al. The use of a personalized learning approach to implementing self-regulated online learning. Computers and Education: Artificial Intelligence, 2022, 3: 100086.
    [3] Piech C, Bassen J, Huang J, et al. Deep knowledge tracing. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015. 505–513.
    [4] Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989, 1(2): 270–280.
    [5] Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005, Montreal: IEEE, 2005. 729–734.
    [6] Nakagawa H, Iwasawa Y, Matsuo Y. Graph-based knowledge tracing: Modeling student proficiency using graph neural network. Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. Thessaloniki: IEEE, 2019. 156–163.
    [7] Song XY, Li JX, Tang YF, et al. JKT: A joint graph convolutional network based deep knowledge tracing. Information Sciences, 2021, 580: 510–523.
    [8] Song XY, Li JX, Lei Q, et al. Bi-CLKT: Bi-graph contrastive learning based knowledge tracing. Knowledge-based Systems, 2022, 241: 108274.
    [9] Eddy SR. Hidden Markov models. Current Opinion in Structural Biology, 1996, 6(3): 361–365.
    [10] 王宇, 朱梦霞, 杨尚辉, 等. 深度知识追踪模型综述和性能比较. 软件学报, 2023, 34(3): 1365–1395.
    [11] Corbett AT, Anderson JR. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-adapted Interaction, 1994, 4(4): 253–278.
    [12] Pardos ZA, Heffernan NT. KT-IDEM: Introducing item difficulty to the knowledge tracing model. Proceedings of the 19th International Conference on User Modeling, Adaptation, and Personalization. Girona: Springer, 2011. 243–254.
    [13] Yeung CK, Yeung DY. Addressing two problems in deep knowledge tracing via prediction-consistent regularization. Proceedings of the 5th Annual ACM Conference on Learning at Scale. London: ACM, 2018. 5.
    [14] Chen PH, Lu Y, Zheng VW, et al. Prerequisite-driven deep knowledge tracing. Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018. 39–48.
    [15] Wang ZW, Feng XQ, Tang JL, et al. Deep knowledge tracing with side information. Proceedings of the 20th International Conference on Artificial Intelligence in Education. Chicago: IEEE, 2019. 303–308.
    [16] Su Y, Liu QW, Liu Q, et al. Exercise-enhanced sequential modeling for student performance prediction. Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018. 297.
    [17] Zhang JN, Shi XJ, King I, et al. Dynamic key-value memory networks for knowledge tracing. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017. 765–774.
    [18] Ai FZ, Chen YS, Guo YC, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system. Proceedings of the 12th International Conference on Educational Data Mining. Montréal: International Educational Data Mining Society (IEDMS), 2019. 240–245.
    [19] Minn S, Yu Y, Desmarais MC, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing. Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018. 1182–1187.
    [20] Minn S, Desmarais MC, Zhu FD, et al. Dynamic student classiffication on memory networks for knowledge tracing. Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining. Macao: Springer, 2019. 163–174.
    [21] 琚生根, 康睿, 赵容梅, 等. 多知识点融合嵌入的深度知识追踪模型. 软件学报, 2023, 34(11): 5126–5142.
    [22] Zhang S, Tong HH, Xu JJ, et al. Graph convolutional networks: A comprehensive review. Computational Social Networks, 2019, 6(1): 11.
    [23] Abdelrahman G, Wang Q. Learning data teaching strategies via knowledge tracing. Knowledge-based Systems, 2023, 269: 110511.
    [24] Ebbinghaus H. Memory: A contribution to experimental psychology. Annals of Neurosciences, 2013, 20(4): 155–156.
    [25] Murre JMJ, Dros J. Replication and analysis of Ebbinghaus’ forgetting curve. PLoS One, 2015, 10(7): e0120644.
    [26] 李晓光, 魏思齐, 张昕, 等. LFKT: 学习与遗忘融合的深度知识追踪模型. 软件学报, 2021, 32(3): 818–830.
    [27] 董永峰, 黄港, 薛婉若, 等. 融合IRT的图注意力深度知识追踪模型. 计算机科学, 2023, 50(3): 173–180.
    [28] Abdelrahman G, Wang Q. Deep graph memory networks for forgetting-robust knowledge tracing. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7844–7855.
    [29] Nagatani K, Zhang Q, Sato M, et al. Augmenting knowledge tracing by considering forgetting behavior. Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019. 3101–3107.
    相似文献
    引证文献
引用本文

王忠,王净雨,于浩然,徐文,梁宏涛.融合知识点关系的深度记忆网络知识追踪.计算机系统应用,2024,33(8):78-89

复制
分享
文章指标
  • 点击次数:265
  • 下载次数: 1061
  • HTML阅读次数: 524
  • 引用次数: 0
历史
  • 收稿日期:2024-02-23
  • 最后修改日期:2024-03-19
  • 在线发布日期: 2024-07-03
文章二维码
您是第11118375位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号