摘要:车辆行驶过程中, 对前方目标的检测速度和检测精度一直是自动驾驶领域研究的重点. 针对现有的目标检测算法模型, 在复杂交通环境下, 传统模型面对重叠目标容易导致误检和漏检的情况发生, 大幅度提高检测精度又会造成计算量过大导致处理速度缓慢, 实时性下降的问题. 本文提出基于YOLOv5模型的改进算法. 首先采用MobileNetV3网络替换原模型中主干网络C3的方案, 实现网络仍保持轻量化的同时, 提高模型响应速度. 其次, 提出一种非极大值抑制算法Adaptive-EIoU-NMS来提高重叠目标的识别精度. 最后采用K-means++聚类算法替换原有聚类算法, 生成更精确的锚框. 实验结果表明, 改进后的模型平均检测精度达到90.1%, 检测速度达到89 f/s. 实验结果可以证实, 改进后的模型针对复杂场景检测精度和检测速度都有显著提高.