摘要:基于最小生成树(minimum spanning tree, MST)的聚类算法能够识别具有任意形状的簇, 该算法在如何有效构建最小生成树和识别无效边方面存在不足, 而且易受到噪声点影响. 本文利用密度峰值聚类算法思想的优点来寻找局部密度峰, 局部密度峰在保留原始数据集分布结构的同时, 排除了噪声点, 因此, 将局部密度峰与最小生成树聚类算法相结合, 采用标签传播, 提出了基于局部密度峰和标签传播的最小生成树聚类算法(DPMST). 该算法采用了局部密度峰之间基于共享邻的距离, 利用局部密度峰之间的邻域信息, 有效构造最小生成树和识别无效边, 使算法能够发现具有复杂结构的簇. 标签传播增强强标签, 削弱弱标签, 以细化错误的标签, 特别是对于边界点以及揭示复杂流形, 能够提高聚类结果的质量. 人工和真实数据集上的实验结果表明, 与经典聚类算法DPC、MST、K-means、DBSCAN、AP、SC和BIRCH比较, DPMST算法表现优异.