多任务学习在不良言论与个体特征检测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of Multi-task Learning in Hate-speech and Individual Characteristics Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多任务学习在自然语言处理领域有广泛应用, 但多任务模型往往对任务间的相关性比较敏感. 如果任务相关性较低或信息传递不合理, 可能会严重影响任务性能. 本文提出了一种新的共享-私有结构的多任务学习模型BB-MTL (BERT-BiLSTM multi-task learning model), 并借助元学习的思想为其设计了一种特殊的参数优化方式MLL-TM (meta-learning-like train methods). 进一步引入一个新的信息融合门SoWLG (Softmax weighted linear gate), 用于选择性地融合每项任务的共享特征与私有特征. 实验验证所提出的多任务学习方法, 考虑到用户在网络上的行为与其个体特征密切相关, 文中结合了不良言论检测、人格检测和情绪检测任务进行了一系列实验. 实验结果表明, BB-MTL能够有效学习相关任务中的特征信息, 在3项任务上的准确率分别达到了81.56%、77.09%和70.82%.

    Abstract:

    Multi-task learning is widely used in the field of natural language processing, but multi-task models tend to be sensitive to the relevance between tasks. If the task relevance is low or the information transfer is unreasonable, the task performance may be seriously affected. This study proposes a new shared-private structure multi-task learning model, BERT-BiLSTM multi-task learning (BB-MTL). It designs a special parameter optimization method, meta-learning-like train methods (MLL-TM) for the model with the help of meta-learning ideas. Further, a new information fusion gate, Softmax weighted linear gate (SoWLG), is introduced for selectively fusing the shared and private features of each task. To validate the proposed multi-task learning method, a series of experiments are conducted by combining the tasks of hate-speech detection, personality detection, and emotion detection, taking into account the fact that user behavior on the Internet is closely related to individual characteristics. The experimental results show that BB-MTL can effectively learn feature information in relevant tasks, and the accuracy rates reach 81.56%, 77.09%, and 70.82% in the three tasks, respectively.

    参考文献
    相似文献
    引证文献
引用本文

肖博健,曹霑懋,许莉芬.多任务学习在不良言论与个体特征检测中的应用.计算机系统应用,2024,33(7):74-83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-08
  • 最后修改日期:2024-02-04
  • 录用日期:
  • 在线发布日期: 2024-05-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号