摘要:多视图聚类旨在从不同视图的多样性信息中, 学习到更加全面和准确的共识表示, 以提高模型的聚类性能. 目前大部分多视图聚类算法采用希尔伯特-施密特独立性准则(HSIC)或自适应加权方法从全局考虑各视图的多样性, 忽略了各视图样本之间的局部多样性信息学习. 针对上述问题, 提出了多样性引导的深度多视图聚类算法. 首先, 提出了融合多头自注意力机制的软聚类模块, 多头自注意力机制用来学习全局多样性, 软聚类模糊C均值算法用来学习局部多样性; 其次, 在深度图自编码器网络结构中引入软聚类模块, 以达到多样性信息引导潜在表示生成的目的; 然后, 将得到的各视图潜在表示进行加权融合得到共识表示, 并采用谱聚类算法对共识表示进行聚类; 最后, 在3个常用数据集上进行了对比实验和消融实验. 实验结果表明, 提出的聚类算法具有良好的聚类效果, 以及提出的多样性信息学习模块可以有效提高算法聚类性能.