摘要:在实现不同来源的图谱数据融合过程中, 实体对齐是关键的步骤, 其目的在于确定不同图谱间等价的实体对. 现有实体对齐方法大多基于图嵌入方式, 通过考虑图谱的结构和属性信息进行对齐, 但并未很好处理二者之间的交互关系, 同时忽略对关系及多阶邻居信息的利用. 为解决上述问题, 提出一种融合结构与属性注意力机制模型(fused structural and attribute attention mechanism model, FSAAM)的实体对齐方法. 该模型首先根据图谱数据特征划分为属性和结构通道数据, 其次使用属性注意力机制实现对属性信息的学习, 在实现对结构信息的学习中增加对关系信息的学习, 利用图注意力机制寻找对于实体对齐有益的邻居特征, 引入Transformer编码器更好的关联实体之间的信息, 并通过Highway网络减少可能学习到噪声信息的影响, 最后对学习到的结构通道和属性通道信息的相似度矩阵利用LS-SVM网络, 得到集成相似度矩阵从而实现实体对齐. 所提模型在公开数据集DBP15K的3个子数据集上进行验证. 实验结果表明, 相较于基线模型中效果最好的结果, 其Hits@1分别提高了2.7%, 4.3%和1.7%, 且Hits@10和MRR也均有提升, 表明本模型能够有效提高实体对齐的准确性.