融合结构与属性注意力机制的实体对齐
作者:
基金项目:

国家重点研发计划(2020YFB1708000); 四川省重大科技专项 (2022ZDZX0003)


Entity Alignment Integrating Structure and Attribute Attention Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在实现不同来源的图谱数据融合过程中, 实体对齐是关键的步骤, 其目的在于确定不同图谱间等价的实体对. 现有实体对齐方法大多基于图嵌入方式, 通过考虑图谱的结构和属性信息进行对齐, 但并未很好处理二者之间的交互关系, 同时忽略对关系及多阶邻居信息的利用. 为解决上述问题, 提出一种融合结构与属性注意力机制模型(fused structural and attribute attention mechanism model, FSAAM)的实体对齐方法. 该模型首先根据图谱数据特征划分为属性和结构通道数据, 其次使用属性注意力机制实现对属性信息的学习, 在实现对结构信息的学习中增加对关系信息的学习, 利用图注意力机制寻找对于实体对齐有益的邻居特征, 引入Transformer编码器更好的关联实体之间的信息, 并通过Highway网络减少可能学习到噪声信息的影响, 最后对学习到的结构通道和属性通道信息的相似度矩阵利用LS-SVM网络, 得到集成相似度矩阵从而实现实体对齐. 所提模型在公开数据集DBP15K的3个子数据集上进行验证. 实验结果表明, 相较于基线模型中效果最好的结果, 其Hits@1分别提高了2.7%, 4.3%和1.7%, 且Hits@10和MRR也均有提升, 表明本模型能够有效提高实体对齐的准确性.

    Abstract:

    For fusing map data from different sources, entity alignment is a key step, and its purpose is to determine equivalent entity pairs between different maps. Most of the existing entity alignment methods are based on graph embedding, which aligns by considering the structure and attribute information of the graph. However, they do not handle the interactive relationship between the two well and ignore the use of relationships and multi-order neighbor information. To solve the above problems, this study proposes an entity alignment method based on the fused structural and attribute attention mechanism model (FSAAM). The model first divides the graph data characteristics into attribute and structural channel data and then uses the attribute attention mechanism to learn attribute information. It adds the learning of relationship information to that of structural information and uses the graph attention mechanism to find the entities aligned with beneficial neighbor features. The Transformer encoder is introduced to better correlate information between entities, and the Highway network is utilized to reduce the impact of noise information that may be learned. Finally, the model applies the LS-SVM network to the similarity matrix of the learned structural channel and the attribute channel information, obtaining the integrated similarity matrix to achieve entity alignment. The proposed model is verified on three sub-datasets of the public data set DBP15K. Experimental results show that compared with the best results in the baseline model, its Hits@1 has increased by 2.7%, 4.3%, and 1.7% respectively, and Hits@10 and MRR have also improved, indicating that this model can effectively improve the alignment accuracy of entities.

    参考文献
    [1] 赵晓娟, 贾焰, 李爱平, 等. 多源知识融合技术研究综述. 云南大学学报(自然科学版), 2020, 42(3): 459–473.
    [2] Hogan A, Blomqvist E, Cochez M, et al. Knowledge graphs. ACM Computing Surveys, 2022, 54(4): 71.
    [3] 高云君, 葛丛丛, 郭宇翔, 等. 面向关系型数据与知识图谱的数据集成技术综述. 软件学报, 2023, 34(5): 2365–2391.
    [4] 张富, 杨琳艳, 李健伟, 等. 实体对齐研究综述. 计算机学报, 2022, 45(6): 1195–1225.
    [5] Suchanek FM, Abiteboul S, Senellart P. PARIS: Probabilistic alignment of relations, instances, and schema. Proceedings of the VLDB Endowment, 2011, 5(3): 157–168.
    [6] Mahdisoltani F, Biega J, Suchanek FM. YAGO3: A knowledge base from multilingual Wikipedias. Proceedings of the 7th Biennial Conference on Innovative Data Systems Research. Asilomar, 2015.
    [7] Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data. Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 2787–2795.
    [8] Chen MH, Tian YT, Yang MH, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: AAAI Press, 2017. 1511–1517.
    [9] Sun ZQ, Hu W, Zhang QH, et al. Bootstrapping entity alignment with knowledge graph embedding. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2018. 4396–4402.
    [10] Pei SC, Yu L, Hoehndorf R, et al. Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference. The World Wide Web Conference. San Francisco: ACM, 2019. 3130–3136.
    [11] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon: OpenReview.net, 2017.
    [12] Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks. Proceedings of the 6th International Conference on Learning Representations. Vancouver: OpenReview.net, 2018.
    [13] Wu YT, Liu X, Feng YS, et al. Jointly learning entity and relation representations for entity alignment. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: ACL, 2019. 240–249.
    [14] Wu YT, Liu X, Feng YS, et al. Relation-aware entity alignment for heterogeneous knowledge graphs. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: IJCAI.org, 2019. 5278–5284.
    [15] Sun ZQ, Chen MH, Hu W, et al. Knowledge association with hyperbolic knowledge graph embeddings. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL, 2020. 5704–5716.
    [16] Yang HW, Zou YY, Shi P, et al. Aligning cross-lingual entities with multi-aspect information. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: ACL, 2019. 4431–4441.
    [17] Liu ZY, Cao YX, Pan LM, et al. Exploring and evaluating attributes, values, and structures for entity alignment. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL, 2020. 6355–6364.
    [18] Devlin J, Chang MW, Lee K, et al. BERT: Pre-training of deep bidirectional Transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: ACL, 2019. 4171–4186.
    [19] Sun ZQ, Wang CM, Hu W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation. Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington: AAAI Press, 2020. 222–229.
    [20] Hamilton WL, Ying Z, Leskovec J. Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 1025–1035.
    [21] Zhu RB, Ma M, Wang P. RAGA: Relation-aware graph attention networks for global entity alignment. Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2021. 501–513.
    [22] Srivastava RK, Greff K, Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.
    [23] Sun ZQ, Hu W, Li CK. Cross-lingual entity alignment via joint attribute-preserving embedding. Proceedings of the 16th International Semantic Web Conference. Vienna: Springer, 2017. 628–644.
    [24] Lehmann J, Isele R, Jakob M, et al. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 2015, 6(2): 167–195.
    [25] Zhu Y, Liu HZ, Wu ZH, et al. Relation-aware neighborhood matching model for entity alignment. Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington: AAAI Press, 2021. 4749–4756.
    [26] Mao X, Ma MR, Yuan H, et al. An effective and efficient entity alignment decoding algorithm via third-order tensor isomorphism. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin: ACL, 2022. 5888–5898.
    [27] 谭元珍, 李晓楠, 李冠宇. 基于邻域聚合的实体对齐方法. 计算机工程, 2022, 48(6): 65–72.
    [28] Liu B, Lan TC, Hua W, et al. Dependency-aware self-training for entity alignment. Proceedings of the 16th ACM International Conference on Web Search and Data Mining. Singapore: ACM, 2023. 796–804.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李忠阳,王淑营,蒋敏.融合结构与属性注意力机制的实体对齐.计算机系统应用,2024,33(6):58-69

复制
分享
文章指标
  • 点击次数:416
  • 下载次数: 1381
  • HTML阅读次数: 796
  • 引用次数: 0
历史
  • 收稿日期:2023-12-14
  • 最后修改日期:2024-01-17
  • 在线发布日期: 2024-04-28
文章二维码
您是第11114897位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号