摘要:网络连接数据的统计推断问题已成为近年来统计学研究的热点问题. 传统模型中样本数据间的独立性假设通常不能满足现代网络连接数据的分析需求. 本文研究了网络连接数据中每个节点的独立效应, 并借助融合惩罚的思想, 使得相互连接节点的独立效应趋同. 同时借助仿变量方法(Knockoff)仿冒原始变量的数据依赖结构、构造与目标变量无关的属性特征, 提出了针对网络连接数据进行变量选择的仿变量方法(NLKF). 从理论上证明了NLKF方法将变量选择的错误发现率(FDR)控制在目标水平. 对于原始数据协方差未知的情形, 使用估计的协方差矩阵仍具有上述良好的统计性质. 通过与传统变量选择方法Lasso对比, 说明了本文方法的可靠性. 最后结合因子投资领域2022年1–12月中国A股市场4000只股票的200个因子数据及每只股票所属申万一级行业构造的网络关系, 给出模型的应用实例.