基于深度学习的眼底血管图像分割研究进展
作者:
基金项目:

国家自然科学基金(82174528); 山东省中医药科技项目(2021M146); 山东省研究生教育质量提升计划(SDYKC19147)


Research Progress in Segmentation of Retinal Blood Vessel Images Based on Deep Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    眼底血管图像分割对青光眼、糖尿病视网膜病变等多种眼部疾病有较好的辅助诊断作用, 目前深度学习因其强大的抽象特征发现能力, 有望满足人们从眼底血管图像中提取特征信息进行图像自动分割的需求, 成为眼底血管图像分割领域的研究热点. 为更好把握该领域的研究进展, 本文对相关数据集和评价指标整理归纳, 对深度学习在眼底血管图像分割中的应用进行详细阐述, 重点梳理各类分割方法的基本思想、网络结构及改进之处, 分析现有眼底血管图像分割方法存在的局限性及面临的挑战, 并对该领域未来的研究方向做出展望.

    Abstract:

    Retinal blood vessel image segmentation has a good auxiliary diagnostic effect on various eye diseases such as glaucoma and diabetic retinopathy. Currently, deep learning, with its powerful ability to discover abstract features, is expected to meet people’s needs for extracting feature information from retinal blood vessel images for automatic image segmentation. It has become a research hotspot in the field of retinal blood vessel image segmentation. To better grasp the research progress in this field, this study summarizes the relevant datasets and evaluation indicators and elaborates in detail on the application of deep learning in retinal blood vessel image segmentation. It focuses on the basic ideas, network structure, and improvements of various segmentation methods, analyzing the limitations and challenges faced by existing retinal blood vessel image segmentation methods and looking forward to the future research direction in this field.

    参考文献
    [1] 姚慧霞. 基于注意力机制和卷积神经网络的视网膜血管图像分割方法研究 [硕士学位论文]. 兰州: 西北师范大学, 2022.
    [2] 朱承璋, 邹北骥, 向遥, 等. 彩色眼底图像视网膜血管分割方法研究进展. 计算机辅助设计与图形学学报, 2015, 27(11): 2046–2057.
    [3] 吕志金, 陈雪芳, 赵晓芳, 等. 新型下采样法在视网膜血管分割中的应用. 中国医疗器械杂志, 2023, 47(1): 38–42, 53.
    [4] Yin BJ, Li HT, Sheng B, et al. Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Medical Image Analysis, 2015, 26(1): 232–242.
    [5] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444.
    [6] 张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述. 激光与光电子学进展, 2022, 59(2): 55–71.
    [7] Dai PS, Luo HY, Sheng HW, et al. A new approach to segment both main and peripheral retinal vessels based on gray-voting and Gaussian mixture model. PLoS One, 2015, 10(6): e0127748.
    [8] 向陈君, 张新晨. 基于眼底图像的视网膜血管分割方法综述. 工业技术创新, 2019, 6(2): 110–114.
    [9] 王诗惠, 郝晓凤, 谢立科. 人工智能在视网膜疾病中应用的研究现状与展望. 中华眼科医学杂志(电子版), 2020, 10(6): 374–379.
    [10] 姜百慧, 项开来, 秦秀虹, 等. 深度学习在视网膜疾病中的应用. 眼科新进展, 2021, 41(7): 688–691, 695.
    [11] Staal J, Abràmoff MD, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 2004, 23(4): 501–509.
    [12] 吴晨玥, 易本顺, 章云港, 等. 基于改进卷积神经网络的视网膜血管图像分割. 光学学报, 2018, 38(11): 1111004.
    [13] 李大湘, 张振. 基于改进U-Net视网膜血管图像分割算法. 光学学报, 2020, 40(10): 1010001.
    [14] Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 2016, 35(11): 2369–2380.
    [15] Du HW, Zhang XY, Song G, et al. Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. Computers in Biology and Medicine, 2023, 153: 106416.
    [16] Liu YH, Shen J, Yang L, et al. ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control, 2023, 79: 104087.
    [17] Owen CG, Rudnicka AR, Mullen R, et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004–2010.
    [18] Zhang Y, He M, Chen ZN, et al. Bridge-Net: Context-involved U-Net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Systems with Applications, 2022, 195: 116526.
    [19] Sun MY, Li KQ, Qi XQ, et al. Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images. Journal of Visual Communication and Image Representation, 2021, 77: 103134.
    [20] Jebaseeli TJ, Durai CAD, Peter JD. Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM. Optik, 2019, 199: 163328
    [21] Wu HS, Wang W, Zhong JF, et al. SCS-Net: A scale and context sensitive network for retinal vessel segmentation. Medical Image Analysis, 2021, 70: 102025.
    [22] 易三莉, 陈建亭, 贺建峰. 基于多路径输入和多尺度特征融合的视网膜血管分割. 光电子·激光, 2021, 32(7): 735–741.
    [23] 孙颖, 丁卫平, 黄嘉爽, 等. RCAR-UNet: 基于粗糙通道注意力机制的视网膜血管分割网络. 计算机研究与发展, 2023, 60(4): 947–961.
    [24] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
    [25] Noh KJ, Park SJ, Lee S. Scale-space approximated convolutional neural networks for retinal vessel segmentation. Computer Methods and Programs in Biomedicine, 2019, 178: 237–246.
    [26] Guo YF, Peng YJ. BSCN: Bidirectional symmetric cascade network for retinal vessel segmentation. BMC Medical Imaging, 2020, 20(1): 20.
    [27] Balasubramanian K, Ananthamoorthy NP. Retracted article: Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3): 3559–3569.
    [28] Yang X, Li ZQ, Guo YQ, et al. Retinal vessel segmentation based on an improved deep forest. International Journal of Imaging Systems and Technology, 2021, 31(4): 1792–1802.
    [29] Haider SI, Aurangzeb K, Alhussein M. Modified Anam-net based lightweight deep learning model for retinal vessel segmentation. Computers, Materials & Continua, 2022, 73(1): 1501–1526.
    [30] Xu YA, Fan YL. Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images. Biocybernetics and Biomedical Engineering, 2022, 42(2): 695–706.
    [31] Li JY, Gao G, Yang L, et al. GDF-Net: A multi-task symmetrical network for retinal vessel segmentation. Biomedical Signal Processing and Control, 2023, 81: 104426.
    [32] 荣震宇, 刘建毅. 基于Transformer和MLP的眼底血管分割算法. 北京邮电大学学报, 2023, 46(1): 26–31.
    [33] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [34] Mo J, Zhang L. Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2181–2193.
    [35] Soomro TA, Afifi AJ, Gao JB, et al. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems with Applications, 2019, 134: 36–52.
    [36] Jiang Y, Zhang H, Tan N, et al. Automatic retinal blood vessel segmentation based on fully convolutional neural networks. Symmetry, 2019, 11(9): 1112.
    [37] Sathananthavathi V, Indumathi G, Swetha Ranjani A. Parallel architecture of fully convolved neural network for retinal vessel segmentation. Journal of Digital Imaging, 2020, 33(1): 168–180.
    [38] Khan TM, Naqvi SS, Arsalan M, et al. Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. Proceedings of the 2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020. 1–8.
    [39] Atli İ, Gedik OS. Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 2021, 24(2): 271–283.
    [40] Jiang Y, Wang FL, Gao J, et al. Efficient BFCN for automatic retinal vessel segmentation. Journal of Ophthalmology, 2020, 2020: 6439407.
    [41] 张立泽清. 基于FCN的视网膜血管图像分割与研究 [硕士学位论文]. 西安: 陕西科技大学, 2020.
    [42] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [43] 孙雪. 基于U-Net的医学图像分割网络研究 [硕士学位论文]. 南京: 南京邮电大学, 2022.
    [44] Wang DY, Haytham A, Pottenburgh J, et al. Hard attention net for automatic retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3384–3396.
    [45] Cheng YL, Ma MN, Zhang LJ, et al. Retinal blood vessel segmentation based on densely connected U-Net. Mathematical Biosciences and Engineering, 2020, 17(4): 3088–3108.
    [46] Yuan YC, Zhang L, Wang LT, et al. Multi-level attention network for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 312–323.
    [47] Jiang Y, Wu C, Wang G, et al. MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation. PLoS One, 2021, 16(7): e0253056.
    [48] Wang JK, Li X, Lv PQ, et al. SERR-U-Net: Squeeze-and-excitation residual and recurrent block-based U-Net for automatic vessel segmentation in retinal image. Computational and Mathematical Methods in Medicine, 2021, 2021: 5976097.
    [49] Hu XL, Wang LJ, Cheng SL, et al. HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation. PLoS One, 2021, 16(9): e0257013.
    [50] Liu CJ, Gu PH, Xiao ZY. Multiscale U-Net with spatial positional attention for retinal vessel segmentation. Journal of Healthcare Engineering, 2022, 2022: 5188362.
    [51] Huang JP, Lin ZF, Chen YY, et al. DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel. PeerJ Computer Science, 2022, 8: e871.
    [52] Wu J, Liu Y, Zhu YP, et al. Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation. PLoS One, 2022, 17(8): e0273318.
    [53] Li JY, Gao G, Liu YH, et al. MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation. Measurement, 2023, 206: 112316.
    [54] Sun K, Chen Y, Chao Y, et al. A retinal vessel segmentation method based improved U-Net model. Biomedical Signal Processing and Control, 2023, 82: 104574.
    [55] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [56] Ma YL, Li X, Duan XP, et al. Retinal vessel segmentation by deep residual learning with wide activation. Computational Intelligence and Neuroscience, 2020, 2020: 8822407.
    [57] Liu WH, Jiang Y, Zhang JY, et al. RFARN: Retinal vessel segmentation based on reverse fusion attention residual network. PLoS One, 2021, 16(12): e0257256.
    [58] Zhang JW, Zhang YC, Qiu HL, et al. Pyramid-Net: Intra-layer pyramid-scale feature aggregation network for retinal vessel segmentation. Frontiers in Medicine, 2021, 8: 761050.
    [59] Gao JX, Huang QZ, Gao ZD, et al. Image segmentation of retinal blood vessels based on dual-attention multiscale feature fusion. Computational and Mathematical Methods in Medicine, 2022, 2022: 8111883.
    [60] 武婷婷. 基于生成对抗网络的视网膜血管图像分割算法研究 [硕士学位论文]. 郑州: 河南工业大学, 2021.
    [61] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014. 2672–2680.
    [62] Wu C, Zou YX, Yang Z. U-GAN: Generative adversarial networks with U-Net for retinal vessel segmentation. Proceedings of the 14th International Conference on Computer Science & Education. Toronto: IEEE, 2019. 642–646.
    [63] Yang TJ, Wu TT, Li L, et al. SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. Journal of Digital Imaging, 2020, 33(4): 946–957.
    [64] Park KB, Choi SH, Lee JY. M-GAN: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access, 2020, 8: 146308–146322.
    [65] Yue C, Ye MQ, Wang PP, et al. Generative adversarial network combined with SE-ResNet and dilated inception block for segmenting retinal vessels. Computational Intelligence and Neuroscience, 2022, 2022: 3585506.
    [66] Liu ML, Wang ZD, Li H, et al. AA-WGAN: Attention augmented Wasserstein generative adversarial network with application to fundus retinal vessel segmentation. Computers in Biology and Medicine, 2023, 158: 106874.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺鑫,王晓燕,周启香,张文凯.基于深度学习的眼底血管图像分割研究进展.计算机系统应用,2024,33(3):12-23

复制
分享
文章指标
  • 点击次数:813
  • 下载次数: 5030
  • HTML阅读次数: 2301
  • 引用次数: 0
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:2023-10-08
  • 在线发布日期: 2023-12-25
文章二维码
您是第11120643位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号