融合多层次浅层信息的航拍小目标检测
作者:

Small Target Detection for Aerial Photography Fusing Multi-layer Shallow Information
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对小目标检测及目标被遮挡的问题, 本文基于VisDrone2019数据集构建相应交通场景, 提出一种小目标检测算法. 首先, 充分利用主干网络的浅层特征改善小目标漏检的问题, 通过在YOLOv7算法原有的网络结构上增加小目标检测层P2, 并在P2小目标检测层的模型上为特征融合网络添加多层次浅层信息融合模块, 从而提高算法小目标检测效果. 其次, 使用全局上下文模块构建目标与全局上下文的联系, 增强模型区分目标与背景的能力, 改善目标因遮挡而出现特征缺失情况下的被检测效果. 最后, 本文采用专为小目标设计的损失函数NWD代替基线模型中的CIoU损失函数, 从而解决了IoU本身及其扩展对微小物体的位置偏差非常敏感的问题. 实验表明, 改进后的YOLOv7模型在航拍小目标数据集VisDrone2019 (测试集和验证集)上面mAP.5:.95分别有2.3%和2.8%的提升, 取得了十分优异的检测效果.

    Abstract:

    To solve the problem of small target detection and target occlusion, this study constructs corresponding traffic scenes based on the VisDrone2019 data set and proposes a small target detection algorithm. First, the shallow features of the backbone network are fully used to improve the problem of missing small targets. The small target detection layer P2 is added to the original network structure of the YOLOv7 algorithm, and a multi-level shallow information fusion module is added to the feature fusion network of the model of the small target detection layer P2, so as to improve the small target detection effect of the algorithm. Secondly, the global context module is used to build the connection between the target and the global context, enhance the ability of the model to distinguish between the target and the background, and improve the detection effect when the target is missing features due to occlusion. Finally, the CIoU loss function in the baseline model is replaced by NWD, a loss function specially designed for small targets in this study, so as to solve the problem that IoU itself and its extension are highly sensitive to the position deviation of small targets. Experiments show that the improved YOLOv7 model has improved by 2.3% and 2.8% respectively in the small target aerial photography data set VisDrone2019 (test set and validation set) with mAP.5:.95, achieving excellent detection results.

    参考文献
    [1] 陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测. 光学 精密工程, 2021, 29(11): 2672–2682.
    [2] 李凯, 林宇舜, 吴晓琳, 等. 基于多尺度融合与注意力机制的小目标车辆检测. 浙江大学学报(工学版), 2022, 56(11): 2241–2250.
    [3] Zhu YS, Zhao CY, Wang JQ, et al. CoupleNet: Coupling global structure with local parts for object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 4146–4154.
    [4] 祝星馗, 蒋球伟. 基于CNN与Transformer的无人机图像目标检测研究. 武汉理工大学学报(信息与管理工程版), 2022, 44(2): 323–331.
    [5] 李子豪, 王正平, 贺云涛. 基于自适应协同注意力机制的航拍密集小目标检测算法. 航空学报, 2023, 44(13): 327944.
    [6] Kisantal M, Wojna Z, Murawski J, et al. Augmentation for small object detection. arXiv:1902.07296, 2019.
    [7] 郭磊, 王邱龙, 薛伟, 等. 基于改进YOLOv5的小目标检测算法. 电子科技大学学报, 2022, 51(2): 251–258.
    [8] Wang JW, Xu C, Yang W, et al. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv:2110.13389, 2021.
    [9] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023. 7464–7475.
    [10] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法. 计算机工程与应用, 2023, 59(9): 198–206.
    [11] Cao Y, Xu JR, Lin S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019. 1971–1980.
    [12] Zheng ZH, Wang P, Ren DW, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574–8586.
    [13] Ge Z, Liu ST, Li ZM, et al. OTA: Optimal transport assignment for object detection. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 303–312.
    [14] LeCun Y, Boser B, Denker J, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551.
    [15] Wang XL, Girshick R, Gupta A, et al. Non-local neural networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7794–7803.
    [16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [17] 黎学飞, 童晶, 陈正鸣, 等. 基于改进YOLOv5的小目标检测. 计算机系统应用, 2022, 31(12): 242–250.
    [18] Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 618–626.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

秦云飞,崔晓龙,程林,樊继东.融合多层次浅层信息的航拍小目标检测.计算机系统应用,2024,33(2):176-187

复制
分享
文章指标
  • 点击次数:617
  • 下载次数: 1365
  • HTML阅读次数: 1082
  • 引用次数: 0
历史
  • 收稿日期:2023-05-27
  • 最后修改日期:2023-06-26
  • 在线发布日期: 2024-01-02
  • 出版日期: 2023-02-05
文章二维码
您是第11245625位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号