基于知识图谱的双端知识感知图卷积推荐模型
作者:
基金项目:

镇江市重点研发计划(GY2023034)


Knowledge Graph-based Recommendation Model with Bipartite Knowledge Aware GCN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有基于知识图谱的推荐模型仅从用户或项目一端进行特征提取, 从而缺乏对另一端的特征提取的问题, 提出一种基于知识图谱的双端知识感知图卷积推荐模型. 首先, 对于用户、项目及知识图谱中的实体进行随机初始化表征得到初始特征表示; 接着, 采用基于用户和项目的知识感知注意力机制同时从用户、项目两端在知识图谱中进行特征提取; 其次, 使用图卷积网络采用不同的聚合方式聚合知识图谱传播过程中的特征信息并预测点击率; 最后, 为了验证模型的有效性, 在Last.FM和Book-Crossing两个公开数据集上与4个基线模型进行对比实验. 在Last.FM数据集上, AUCF1分别比最优的基线模型提升了4.4%、3.8%, ACC提升了1.1%. 在Book-Crossing数据集上, AUCF1分别提升了1.5%、2.2%, ACC提升了1.4%. 实验结果表明, 本文的模型在AUCF1和ACC指标上比其他的基线模型具有更好的鲁棒性.

    Abstract:

    To address the problem that existing knowledge graph-based recommendation models only perform feature extraction from one end of users or items, missing the feature extraction from the other end, a bipartite knowledge-aware graph convolution recommendation model based on knowledge graph is proposed. First, the initial feature representation is obtained by random initialization characterization of users, items and entities in the knowledge graph; then, a user and item-based knowledge-aware attention mechanism is used to simultaneously extract features from both users and items in the knowledge graph; next, a graph convolutional network is used to aggregate feature information in the knowledge graph propagation process using different aggregation methods and predict the click-through rate; finally, the effectiveness of the model is verified by comparing it with four baseline models on two publicly available datasets, Last.FM and Book-Crossing. On the Last.FM dataset, AUC and F1 improve by 4.4% and 3.8% respectively, and ACC improves by 1.1%, compared with the optimal baseline model. On the Book-Crossing dataset, AUC and F1 improve by 1.5% and 2.2% respectively, and ACC improves by 1.4% . The experimental results show that the model in this study has better robustness than other baseline models in AUC, F1 and ACC metrics.

    参考文献
    [1] 唐宏, 范森, 唐帆. 融合协同知识图谱与优化图注意网络的推荐算法. 计算机工程与应用, 2022, 58(19): 98–106.
    [2] 马汉达, 景迪. 基于SSD和时序模型的微博好友推荐算法. 计算机工程与科学, 2021, 43(7): 1291–1298.
    [3] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7): 1619–1647.
    [4] 马汉达, 戴季国, 薛艳飞. 一种基于贝叶斯分类的个性化导购推荐算法. 信息技术, 2017, 41(11): 133–138.
    [5] 胡琪, 朱定局, 吴惠粦, 等. 智能推荐系统研究综述. 计算机系统应用, 2022, 31(4): 47–58.
    [6] 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述. 智能系统学报, 2019, 14(2): 207–216.
    [7] 张雪茹, 官磊. 基于知识图谱的用户偏好推荐算法. 计算机应用, 2021, 41(S2): 59–65.
    [8] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述. 计算机科学与探索, 2022, 16(10): 2249–2263.
    [9] Wang HW, Zhao M, Xie X, et al. Knowledge graph convolutional networks for recommender systems. Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019. 3307–3313.
    [10] Wang HW, Zhang FZ, Wang JL, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018. 417–426.
    [11] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述. 计算机科学与探索, 2023, 17(4): 771–791.
    [12] Wang HW, Zhang FZ, Xie X, et al. DKN: Deep knowledge-aware network for news recommendation. Proceedings of the 2018 World Wide Web Conference. Lyon: International World Wide Web Conferences Steering Committee, 2018. 1835–1844.
    [13] Palumbo E, Rizzo G, Troncy R. Entity2Rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation. Proceedings of the 11th ACM Conference on Recommender Systems. Como: ACM, 2017. 32–36.
    [14] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述. 计算机工程与应用, 2023, 59(4): 30–42.
    [15] Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data. Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 2787–2795.
    [16] Wang Z, Zhang JW, Feng JL, et al. Knowledge graph embedding by translating on hyperplanes. Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City: AAAI, 2014. 1112–1119.
    [17] Lin YK, Liu ZY, Sun MS, et al. Learning entity and relation embeddings for knowledge graph completion. Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin: AAAI, 2015. 2181–2187.
    [18] Yu X, Ren X, Sun YZ, et al. Personalized entity recommendation: A heterogeneous information network approach. Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014. 283–292.
    [19] Zhang CY, Wang Y, Zhu L, et al. Multi-graph heterogeneous interaction fusion for social recommendation. ACM Transactions on Information Systems, 2021, 40(2): 28.
    [20] Hu BB, Shi C, Zhao WX, et al. Leveraging meta-path based context for top- N recommendation with a neural co-attention model. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1531–1540.
    [21] Wang X, He XN, Cao YX, et al. KGAT: Knowledge graph attention network for recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 950–958.
    [22] 唐彦, 卢镘旭. 基于知识图谱与深度涟漪网络的推荐系统. 计算机工程, 2023, 49(5): 63–72, 80.
    [23] 李想, 杨兴耀, 于炯, 等. 基于知识图谱卷积网络的双端推荐算法. 计算机科学与探索, 2022, 16(1): 176–184.
    [24] 郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型. 计算机科学与探索, 2022, 16(6): 1343–1353.
    [25] Zhang JN, Shi XJ, Zhao SL, et al. STAR-GCN: Stacked and reconstructed graph convolutional networks for recommender systems. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: AAAI, 2019. 4264–4270.
    [26] Tang XL, Wang TY, Yang HZ, et al. AKUPM: Attention-enhanced knowledge-aware user preference model for recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 1891–1899.
    [27] Wang HW, Zhang FZ, Zhao M, et al. Multi-task feature learning for knowledge graph enhanced recommendation. Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019. 2000–2010.
    [28] 沈旭, 王淑营, 田媛梦, 等. 基于知识图谱和图注意力的众包任务推荐算法. 计算机应用研究, 2023, 40(1): 115–121.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马汉达,胡志鹏.基于知识图谱的双端知识感知图卷积推荐模型.计算机系统应用,2024,33(1):289-296

复制
分享
文章指标
  • 点击次数:476
  • 下载次数: 1327
  • HTML阅读次数: 948
  • 引用次数: 0
历史
  • 收稿日期:2023-07-24
  • 最后修改日期:2023-09-01
  • 在线发布日期: 2023-11-28
  • 出版日期: 2023-01-05
文章二维码
您是第10688995位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号