基于多模态的实验室科研工效分析系统
作者:
基金项目:

福建省自然科学基金(2021J01617); 国家自然科学基金(U21A20471)


Multi-mode Analysis System of Research Efficiency in Labs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    为实现实验室科研管理过程中的成员工时和工效分析、任务分配的合理性评估等需求, 研究一种基于摄像头视频、考勤机记录、Web系统记录等的多模态工效分析系统MASRE. 该系统通过实验室科研人员工时及其玩手机行为导致的无效工时、工效实时对比与展示, 激励实验室成员投入更多的时间开展学术研究. 依据系统计算的工效变化趋势, 实验室负责人可分析科研任务分配的合理性, 科研人员也可分析影响其科研效率的因素. MASRE系统由负责工时工效统计的Web系统模块和支持无效工时自动识别的AI分析模块构成, 采用PyTorch、VUE 3、MySQL等技术实现. 以该系统研发及其研究报告撰写的工时工效分析为例进行实验分析, 结果表明MASRE系统可有效识别无效工时并进行工时统计与工效分析. 同时, 该系统已免费向实验室研究团队开放申请注册使用, 网址为https://icnc-fskd.fzu.edu.cn/htower/.

    Abstract:

    This study aims to meet the requirements of member working hours and efficiency analysis, and reasonable task allocation assessment in scientific research management of labs. It studies a multi-mode analysis system of research efficiency in labs named MASRE based on camera videos, attendance machines, and Web systems. Meanwhile, the system can motivate researchers to invest more time in academic studies by comparing and presenting actual work time, invalid work hours caused by phone abuse, and the research efficiency of researchers. Additionally, according to the research efficiency trends calculated by the system, the lab leaders can analyze whether the research tasks are allocated reasonably or not, and the researchers can explore the factors influencing their efficiency. The MASRE system comprises two core modules of the Web system module and the AI analysis module. The Web system module is responsible for work hours and efficiency statistics, and the AI analysis module supports the automatic identification of invalid work hours. The system is implemented by PyTorch, VUE 3, and MySQL. The work hour and efficiency analysis developed by this system and written by its research report are taken as an example to conduct experimental analysis. The results show that the MASRE system can identify invalid work hours and perform work hour statistics and efficiency analysis. Meanwhile, the system MASRE is now available at https://icnc-fskd.fzu.edu.cn/htower/, and research labs can apply for free use.

    参考文献
    [1] Gralka S, Wohlrabe K, Bornmann L. How to measure research efficiency in higher education? Research grants vs. publication output. Journal of Higher Education Policy and Management, 2019, 41(3): 322–341.
    [2] Weiss A. Turning off my phone improved my science. Nature, 2022.
    [3] Lin YQ, Liu Y, Fan WJ, et al. Revisiting the relationship between smartphone use and academic performance: A large-scale study. Computers in Human Behavior, 2021, 122: 106835.
    [4] 杨阳, 杨晟云, 宋雯静. 手机成瘾与研究生学业拖延: 中介和调节作用分析. 甘肃广播电视大学学报, 2021, 31(1): 78–84.
    [5] Abd Rashid J, Aziz AA, Rahman AA, et al. The influence of mobile phone addiction on academic performance among teenagers. Jurnal Komunikasi: Malaysian Journal of Communication, 2020, 36(3): 408–424.
    [6] 王泽杰, 沈超敏, 赵春, 等. 融合人体姿态估计和目标检测的学生课堂行为识别. 华东师范大学学报(自然科学版), 2022(2): 55–66.
    [7] 王文雅. 办案区场景玩手机行为识别的深度学习算法[硕士学位论文]. 西安: 西安电子科技大学, 2021.
    [8] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.
    [9] Lin TY, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context. Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014. 740–755.
    [10] 王治强, 孙晓东, 杨永, 等. 人脸识别算法在考勤系统的应用. 计算机系统应用, 2021, 30(1): 89–93.
    [11] Deng JK, Guo J, Ververas E, et al. RetinaFace: Single-shot multi-level face localisation in the wild. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 5202–5211.
    [12] Ruiz N, Chong E, Rehg JM. Fine-grained head pose estimation without keypoints. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018. 2074–2083.
    [13] Tsai EJ, Yeh WC. PAM: Pose attention module for pose-invariant face recognition. arXiv:2111.11940, 2021.
    [14] Yang S, Luo P, Loy CC, et al. WIDER FACE: A face detection benchmark. IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 5525–5533.
    [15] Zhu XY, Lei Z, Lin XM, et al. Face alignment across large poses: A 3D solution. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 146–155.
    [16] Yi D, Lei Z, Liao SC, et al. Learning face representation from scratch. arXiv:1411.7923, 2014.
    [17] Huang GB, Ramesh M, Berg T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report, Amherst. 2007.
    [18] 詹健浩, 吴鸿伟, 周成祖, 等. 基于深度学习的行为识别多模态融合方法综述. 计算机系统应用, 2023, 32(1): 41–49.
    [19] 周雪雪, 雷景生, 卓佳宁. 基于多模态特征学习的人体行为识别方法. 计算机系统应用, 2021, 30(4): 146–152.
    [20] 吴晨, 孙强, 倪宏宇, 等. 基于骨架序列提取的异常行为识别. 计算机系统应用, 2022, 31(11): 215–222.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖龙龙,郑志伟,张煜朋,方鑫,郑育强,XIONGNing,于元隆.基于多模态的实验室科研工效分析系统.计算机系统应用,2024,33(1):68-75

复制
分享
文章指标
  • 点击次数:618
  • 下载次数: 1467
  • HTML阅读次数: 806
  • 引用次数: 0
历史
  • 收稿日期:2023-07-10
  • 最后修改日期:2023-08-08
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-01-05
文章二维码
您是第11127998位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号