基于YOLO的钢缆表面损坏检测
作者:

YOLO-based Surface Damage Detection of Steel Cables
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决检测钢缆表面损坏时检测设备资源有限、时间过长等问题, 将深度学习的先进技术以及卷积神经网络(CNN)应用于钢缆表面损坏检测. 提出了一种基于YOLO的缺陷检测网络模型, 将GhostNet融入主干网络, 并基于ShuffleNet及注意力机制提出了新的特征提取模块(ShuffleC3), 再对Head部分进行剪枝改进. 实验结果表明, 改进后网络相比基线YOLOv5s的平均精度提高1.1%, 参数量和计算量分别降低了43.4%和31%, 模型大小减少了42.3%. 可以在降低网络计算成本的同时, 保持较高的识别精确度, 更好地满足了对钢缆材料表面损坏检测的要求.

    Abstract:

    To solve the limited resources and long time of detection equipment in detecting surface damage of steel cables, this study applies advanced technology of deep learning and convolutional neural networks (CNNs) to surface damage detection of the cables. On this basis, it proposes a YOLO-based defect detection network model to integrate GhostNet into the backbone network, and a new feature extraction module (ShuffleC3) based on ShuffleNet and attention mechanism, and then prunes and improves the Head part. Experimental results show that compared with the baseline YOLOv5s, the average accuracy of the improved network is increased by 1.1%. In addition, the number of parameters and calculations are reduced by 43.4% and 31% respectively, and the model size is reduced by 42.3%. Thus, the proposed model can reduce the network computing cost and maintain higher identification accuracy, which better meets the requirements for surface damage detection of steel cable materials.

    参考文献
    [1] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [2] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 7464–7475.
    [3] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [4] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [5] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [6] Han K, Wang YH, Tian Q, et al. GhostNet: More features from cheap operations. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 1577–1586.
    [7] Zhang XY, Zhou XY, Lin MX, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856.
    [8] Ma NN, Zhang XY, Zheng HT, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 122–138.
    [9] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European confeRence on Computer Vision. Munich: Springer, 2018. 3–19.
    [10] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [11] Wang QB, Wu BG, Zhu PF, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 11531–11539.
    [12] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: JMLR.org, 2011. 315–323.
    [13] Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13708–13717.
    [14] Li CY, Li LL, Jiang HL, et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv:2209.02976, 2022.
    [15] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015. 91–99.
    [16] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 1314–1324.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘际驰,吕后坤,李伟.基于YOLO的钢缆表面损坏检测.计算机系统应用,2024,33(1):134-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-01
  • 最后修改日期:2023-08-11
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-01-05
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号