摘要:在传统的控制系统当中, 人们依赖于使用手柄、操纵杆等设备来与外部设备实现人机交互, 这对于具有运动障碍的患者来说是具有挑战的. 而脑机接口(BCI)技术可通过脑环将脑电信号转化为对外界设备的控制命令, 使这些患者可以由大脑“意识”直接控制外部设备. 本文提出一种基于多模态脑机接口的智能小车自动驾驶系统, 该系统融合了受试者的脑电信号、眼电信号和陀螺仪信号3种模态的信号来控制小车. 其中, 脑电信号用于控制小车的速度, 眼电信号用于控制小车的启停, 陀螺仪信号则用于控制小车的转向功能. 此外, 我们还融合了计算机视觉技术, 为智能小车增加了自动驾驶功能, 使得控制更加智能化. 经过实验表明, 10名受试者使用该系统控制小车的平均准确率达到了92.47%, 平均响应时间为1.55 s, 平均信息传递速率达到了55.94 bit/min, 从而说明该控制系统是有效且高效的. 此外, 为了验证小车的自动驾驶功能, 我们设置了多个对比实验进行验证. 实验结果表明, 与手动驾驶相比, 虽然该自动驾驶系统在操控小车的速度上存在劣势, 但是在准确率与稳定性上具有更好的性能优势. 证明该系统可以为残障人士带来更好的操控体验, 在脑控应用和自动驾驶领域具有广阔的应用前景.