基于多模态脑机接口的智能小车自动驾驶系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省普通高校特色创新项目(2022KTSCX035);国家自然科学基金面上项目(62076103)


Autonomous Driving System of Intelligent Car Based on Multimodal Brain Computer Interface
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在传统的控制系统当中, 人们依赖于使用手柄、操纵杆等设备来与外部设备实现人机交互, 这对于具有运动障碍的患者来说是具有挑战的. 而脑机接口(BCI)技术可通过脑环将脑电信号转化为对外界设备的控制命令, 使这些患者可以由大脑“意识”直接控制外部设备. 本文提出一种基于多模态脑机接口的智能小车自动驾驶系统, 该系统融合了受试者的脑电信号、眼电信号和陀螺仪信号3种模态的信号来控制小车. 其中, 脑电信号用于控制小车的速度, 眼电信号用于控制小车的启停, 陀螺仪信号则用于控制小车的转向功能. 此外, 我们还融合了计算机视觉技术, 为智能小车增加了自动驾驶功能, 使得控制更加智能化. 经过实验表明, 10名受试者使用该系统控制小车的平均准确率达到了92.47%, 平均响应时间为1.55 s, 平均信息传递速率达到了55.94 bit/min, 从而说明该控制系统是有效且高效的. 此外, 为了验证小车的自动驾驶功能, 我们设置了多个对比实验进行验证. 实验结果表明, 与手动驾驶相比, 虽然该自动驾驶系统在操控小车的速度上存在劣势, 但是在准确率与稳定性上具有更好的性能优势. 证明该系统可以为残障人士带来更好的操控体验, 在脑控应用和自动驾驶领域具有广阔的应用前景.

    Abstract:

    In traditional control systems, people rely on employing devices such as handles and joysticks to achieve human-machine interaction with external devices, which is a challenge for patients with movement disorders. Meanwhile, brain-computer interface (BCI) technology can convert EEG into control commands for external devices through the brain loop, allowing these patients to directly control external devices by their brain’s “consciousness”. This study proposes an autonomous driving system of intelligent car based on multimodal BCI to integrate the subjects’ EEG, electro-oculography, and gyroscope signals to control the car. EEG is used for controlling the car speed, electrooculography for controlling the start and stop of the car, and gyroscope signals for controlling the car steering. Additionally, computer vision technology is combined to add autonomous driving function for the intelligent car, making control more intelligent. The experiments show that the average accuracy rate of ten subjects utilizing the system to control the car is 92.47%, with an average response time of 1.55 s and an average information transmission rate of 55.94 bit/min, which indicates the effectiveness and efficiency of the control system. Meanwhile, multiple comparative experiments for verification are set up to verify the car’s autonomous driving function. The experimental results show that compared with manual driving, although the autonomous driving system has disadvantages in controlling the car speed, it has better performance advantages in accuracy and stability. This proves that this system can provide better control experience for the disabled, and has broad application prospects in brain control and autonomous driving.

    参考文献
    相似文献
    引证文献
引用本文

班念铭,庹宏炜,雷凯云,龙浩彬,莫伟彬,郑铖杰,潘家辉.基于多模态脑机接口的智能小车自动驾驶系统.计算机系统应用,2023,32(12):63-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-14
  • 最后修改日期:2023-06-28
  • 录用日期:
  • 在线发布日期: 2023-10-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号