摘要:在线评论的有用性预测任务在当前的电子商务领域中发挥着重要的作用, 该任务的目标是判断在线评论的有用性, 进而重点展示对未来消费者更有帮助的评论, 提高消费者获取信息的效率. 在本文中, 我们重点关注近年来在各大在线平台兴起的一种新的评分系统——多维评分系统, 尝试研究用户在该系统中给出的方面评分对在线评论有用性的影响. 本文提出了一个综合考虑了评论文本、用户总体评分和方面评分3种元素及其交互的多层次神经网络模型HORA来完成有用性预测任务. 通过在两个真实世界的数据集上进行的实验结果表明, 与当前的基线模型相比, HORA在MAE和RMSE两个指标上展示了更好的结果, 同时在实验中也表现出了良好的鲁棒性, 表明了方面评分对用户的在线评论有用性感知的重要意义.