基于中心移动的轨迹离群点检测
作者:

Trajectory Outlier Detection Based on Center Shift
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    AIS数据是指通过AIS系统获取的船舶运动轨迹信息, 对其进行挖掘可以获得船舶的运动模式、航行路线、停靠地点等信息. 但其在采集过程中产生的离群点会对聚类等任务造成负面影响, 因此对AIS数据挖掘之前需要进行离群点检测. 然而, 当AIS轨迹数据中存在大量离群点时, 会导致大多数离群点检测算法的准确率显著下降. 为了解决这个问题, 本文提出了一种基于中心移动的轨迹离群点检测算法(center shift outlier detection, CSOD). 通过迫使数据点向其K近邻集合的中心移动, 使每个数据点更加接近典型数据, 从而有效地消除了离群点对聚类的影响. 为了验证本文算法的有效性, 使用浙江海域AIS渔船轨迹数据集, 将本文提出的CSOD算法与一些经典的离群点检测算法进行了对比实验. 实验结果表明, CSOD算法整体上性能更加优越.

    Abstract:

    AIS data refers to the vessel’s motion trajectory information obtained through the AIS system. Mining AIS data can provide insights into the vessel’s motion patterns, navigation routes, docking locations, etc. However, outliers generated during the AIS data collection can have a negative effect on clustering and other tasks. Therefore, outlier detection on AIS data before mining is necessary. However, when there are a large number of outliers in AIS trajectory data, a significant decrease occurs in the accuracy of most outlier detection algorithms. To address this issue, this study proposes a trajectory outlier detection based on center shift (CSOD). The CSOD algorithm encourages data points to move towards the center of their K-nearest neighbor (KNN) set, making each data point closer to typical data and effectively eliminating the influence of outliers on clustering. To validate the effectiveness of the proposed algorithm, the study conducts comparative experiments between the CSOD algorithm and several classical outlier detection algorithms using the AIS fishing vessel trajectory dataset in the Zhejiang sea area. The experimental results demonstrate that the CSOD algorithm outperforms the other algorithms in terms of overall performance.

    参考文献
    [1] Knorr EM, Ng RT. Finding intensional knowledge of distance-based outliers. Proceedings of the 25th International Conference on Very Large Data Bases. New York: Morgan Kaufmann Publishers Inc., 1999. 211–222.
    [2] Domingues R, Filippone M, Michiardi P, et al. A comparative evaluation of outlier detection algorithms: Experiments and analyses. Pattern Recognition, 2018, 74: 406–421. [doi: 10.1016/j.patcog.2017.09.037
    [3] Boukerche A, Zheng LN, Alfandi O. Outlier detection: Methods, models, and classification. ACM Computing Surveys, 2021, 53(3): 1–37. [doi: 10.1145/3381028
    [4] Moustafa N, Hu JK, Slay J. A holistic review of network anomaly detection systems: A comprehensive survey. Journal of Network and Computer Applications, 2019, 128: 33–55. [doi: 10.1016/j.jnca.2018.12.006
    [5] Andrysiak T, Saganowski L. Network anomaly detection based on statistical models with long-memory dependence. Proceedings of the 10th International Conference on Dependability and Complex Systems. Brunów: Springer. 2015. 1–10.
    [6] Breunig MM, Kriegel HP, Ng RT, et al. LOF: Identifying density-based local outliers. ACM SIGMOD Record, 2000, 29(2): 93–104. [doi: 10.1145/335191.335388
    [7] Angiulli F, Basta S, Lodi S, et al. Reducing distance computations for distance-based outliers. Expert Systems with Applications, 2020, 147: 113215. [doi: 10.1016/j.eswa.2020.113215
    [8] Pu G, Wang LJ, Shen J, et al. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology, 2021, 26(2): 146–153. [doi: 10.26599/TST.2019.9010051
    [9] Zhu XD, Zhang J, Li HZ, et al. FRIOD: A deeply integrated feature-rich interactive system for effective and efficient outlier detection. IEEE Access, 2017, 5: 25682–25695. [doi: 10.1109/ACCESS.2017.2771237
    [10] Meng FR, Yuan G, Lv SQ, et al. An overview on trajectory outlier detection. Artificial Intelligence Review, 2019, 52(4): 2437–2456. [doi: 10.1007/s10462-018-9619-1
    [11] Bhowmick K, Narvekar M. Trajectory outlier detection for traffic events: A survey. In: Bhalla S, Bhateja V, Chandavale A, et al., eds. Intelligent Computing and Information and Communication. Singapore: Springer, 2018. 37–46.
    [12] Li XL, Li ZH, Han JW, et al. Temporal outlier detection in vehicle traffic data. Proceedings of the 25th IEEE International Conference on Data Engineering. Shanghai: IEEE, 2009. 1319–1322.
    [13] Chawla S, Zheng Y, Hu JF. Inferring the root cause in road traffic anomalies. Proceedings of the 12th IEEE International Conference on Data Mining. Brussels: IEEE, 2012. 141–150.
    [14] Pang LX, Chawla S, Liu W, et al. On mining anomalous patterns in road traffic streams. In: Tang J, King I, Chen, L, et al., eds. Advanced Data Mining and Applications. Berlin: Springer, 2011. 237–251.
    [15] Chen C, Zhang D, Samuel Castro P, et al. Real-time detection of anomalous taxi trajectories from GPS traces. In: Puiatti A, Gu T, eds. Mobile and Ubiquitous Systems: Computing, Networking, and Services. Berlin: Springer, 2011. 63–74.
    [16] Knorr EM, Ng RT. Algorithms for mining distance-based outliers in large datasets. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann Publishers Inc., 1998. 392–403.
    [17] Lei B, Mingchao D. A distance-based trajectory outlier detection method on maritime traffic data. Proceedings of the 4th International Conference on Control, Automation and Robotics (ICCAR). Auckland: IEEE, 2018. 340–343.
    [18] Liu GY, Zhao HQ, Fan F, et al. An enhanced intrusion detection model based on improved KNN in WSNs. Sensors, 2022, 22(4): 1407. [doi: 10.3390/s22041407
    [19] Alam CN, Manaf K, Atmadja AR, et al. Implementation of haversine formula for counting event visitor in the radius based on Android application. Proceedings of the 4th International Conference on Cyber and IT Service Management. Bandung: IEEE, 2016. 1–6.
    [20] Liu YZ, Li Z, Zhou C, et al. Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(8): 1517–1528. [doi: 10.1109/TKDE.2019.2905606
    [21] Li XJ, Lv JC, Yi Z. An efficient representation-based method for boundary point and outlier detection. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 51–62. [doi: 10.1109/TNNLS.2016.2614896
    [22] Liu FT, Ting KM, Zhou ZH. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 3. [doi: 10.1145/2133360.2133363
    [23] Dong YH, Hopkins S, Li J. Quantum entropy scoring for fast robust mean estimation and improved outlier detection. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019. 545.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨洪宁,徐文进,杜珍珍,姚佳禹.基于中心移动的轨迹离群点检测.计算机系统应用,2023,32(12):189-196

复制
分享
文章指标
  • 点击次数:769
  • 下载次数: 1596
  • HTML阅读次数: 937
  • 引用次数: 0
历史
  • 收稿日期:2023-06-07
  • 最后修改日期:2023-07-12
  • 在线发布日期: 2023-09-15
文章二维码
您是第12790330位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号