改进SeMask主干网络的高分辨率遥感影像变化检测模型
作者:
基金项目:

2021年度青海省科技厅自然科学基金青年基金(2021-ZJ-952Q)


Improvement of High-resolution Remote Sensing Image Change Detection Model Based on SeMask Backbone Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着城市化进程的加速和人口不断增加, 土地资源的利用和管理变得愈发重要. 高分辨率遥感影像技术的发展为土地覆盖类别变化检测提供了新的途径. 目前, 多数遥感影像变化检测任务主要针对显著建筑物的变化检测, 缺少对土地覆盖类别变化检测任务的研究, 本研究基于公开数据集, 对更多土地覆盖类别变化情况进行标注. 在原语义分割主干网络的基础上结合孪生网络结构, 提出适用于土地覆盖类别变化检测任务的检测模型, 该模型在网络的特征提取阶段加入变化引导模块, 以辅助网络关注两时相影像中的变化信息, 并在网络不同阶段加入通道信息交互模块, 以增强不同特征图的信息融合. 同时, 在特征提取阶段最后一层加入特征对齐模块, 以缓解下采样过程导致的特征偏移. 在土地覆盖类别变化检测数据集上的实验结果表明, 本文提出的方法可以有效提取影像中的变化信息, 并提高分割精度.

    Abstract:

    As urbanization accelerates and the population continuously increases, the utilization and management of land resources have become increasingly important. The development of high-resolution remote sensing technology provides a new approach for detecting land cover changes. Currently, most remote sensing image change detection tasks mainly focus on detecting significant changes in buildings, and there is a lack of research on detecting changes in land cover categories. In this study, based on a public dataset, more land cover change scenarios are annotated. Combining the original semantic segmentation backbone network with a Siamese network structure, this study proposes a detection model suitable for tasks of detecting changes in land cover categories. The model incorporates a change guidance module in the feature extraction stage to assist the network in focusing on change information in the two temporal images. A channel information interaction module is added at different stages of the network to enhance the fusion of information from different feature maps. Additionally, a feature alignment module is added to the last layer of the feature extraction stage to alleviate feature offset caused by downsampling. Experimental results on a dataset of detecting changes in land cover categories demonstrate that the proposed method can effectively extract change information from the image and improve the segmentation accuracy.

    参考文献
    [1] 宋刚贤. 基于遥感影像的城市违规建设用地监测研究[硕士学位论文]. 南京: 南京农业大学, 2008.
    [2] 李博. 基于卫星遥感与IBIS模型的藏北高原草地动态变化研究[硕士学位论文] . 兰州: 兰州大学, 2018.
    [3] 柳晶辉, 邵芸, 黄初冬. 基于遥感影像的城市森林分类提取及生态价值估算研究. 地理与地理信息科学, 2007, 23(4): 33-36. [doi: 10.3969/j.issn.1672-0504.2007.04.009
    [4] 杨蜀秦, 宋志双, 尹瀚平, 等. 基于深度语义分割的无人机多光谱遥感作物分类方法. 农业机械学报, 2021, 52(3): 185-192. [doi: 10.6041/j.issn.1000-1298.2021.03.020
    [5] Gao JP, Xu CB, Zhang L, et al. Infrared image change detection of substation equipment in power system using Markov random field. Proceedings of the 2017 International Conference on Computing Intelligence and Information System (CIIS). Nanjing: IEEE, 2017. 332-337.
    [6] 李龙凯. 面向地理国情监测的城市遥感影像变化监测分析方法研究. 中国住宅设施, 2022, (7): 64-66. [doi: 10.3969/j.issn.1672-5093.2022.7.zgzzss202207022
    [7] 付宝晶, 李自立. 基于多特征融合的遥感图像河流提取. 中国农村水利水电, 2022, (12): 53-58. [doi: 10.12396/znsd.220470
    [8] 王光辉, 李建磊, 王华斌, 等. 基于多特征融合的遥感影像变化检测算法. 国土资源遥感, 2018, 30(2): 93-99
    [9] Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer, 1995.
    [10] Ruiz JAM, Riaño D, Arbelo M, et al. Burned area mapping time series in Canada (1984-1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sensing of Environment, 2012, 117: 407-414. [doi: 10.1016/j.rse.2011.10.017
    [11] Daudt RC, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection. Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018. 4063-4067.
    [12] Daudt RC, Le Saux B, Boulch A, et al. Urban change detection for multispectral earth observation using convolutional neural networks. Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. 2115-2118.
    [13] Benedek C, Sziranyi T. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3416-3430. [doi: 10.1109/TGRS.2009.2022633
    [14] Bi HB, Lu D, Zhu HH, et al. STA-Net: Spatial-temporal attention network for video salient object detection. Applied Intelligence, 2021, 51(6): 3450-3459. [doi: 10.1007/s10489-020-01961-4
    [15] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770-778.
    [16] Chen H, Shi ZW. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 2020, 12(10): 1662. [doi: 10.3390/rs12101662
    [17] Chen J, Yuan ZY, Peng J, et al. DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1194-1206. [doi: 10.1109/JSTARS.2020.3037893
    [18] 季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测. 武汉大学学报·信息科学版, 2020, 45(2): 233-241. [doi: 10.13203/j.whugis20180481
    [19] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000-6010.
    [20] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. Proceedings of the 9th International Conference on Learning Representations. ICLR, 2021.
    [21] Liu Z, Lin YT, Cao Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 9992-10002.
    [22] Jain J, Singh A, Orlov N, et al. SeMask: Semantically masked transformers for semantic segmentation. arXiv:2112.12782, 2022.
    [23] Shen L, Lu Y, Chen H, et al. S2Looking: A satellite side-looking dataset for building change detection. Remote Sensing, 2021, 13(24): 5094. [doi: 10.3390/rs13245094
    [24] Peng DF, Bruzzone L, Zhang YJ, et al. SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5891-5906. [doi: 10.1109/TGRS.2020.3011913
    [25] Bromley J, Guyon I, LeCun Y, et al. Signature verification using a “Siamese” time delay neural network. Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver: Morgan Kaufmann Publishers Inc., 1993. 737-744.
    [26] Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text Transformer. The Journal of Machine Learning Research, 2020, 21(1): 140
    [27] Fang S, Li KY, Li Z. Changer: Feature interaction is what you need for change detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610111
    [28] Chen HJ, Pu FL, Yang R, et al. RDP-net: Region detail preserving network for change detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5635010
    [29] Loshchilov I, Hutter F. Decoupled weight decay regularization. Proceedings of the 7th International Conference on Learning Representations. New Orleans: ICLR, 2019.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈海文,王璐,徐中荣,崔璐璐,罗维.改进SeMask主干网络的高分辨率遥感影像变化检测模型.计算机系统应用,2023,32(11):167-174

复制
分享
文章指标
  • 点击次数:1113
  • 下载次数: 1743
  • HTML阅读次数: 1336
  • 引用次数: 0
历史
  • 收稿日期:2023-05-07
  • 最后修改日期:2023-06-06
  • 在线发布日期: 2023-09-15
文章二维码
您是第12790330位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号