基于深度强化学习的双层无人机边缘卸载策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省科技厅区域创新能力引导计划(2022QFY01-14); 西安市碑林区科技计划(GX2137)


Dual-layer UAV-assisted Edge Computing Offloading Strategy Based on DRL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    移动边缘计算(mobile edge computing, MEC)已逐渐成为有效缓解数据过载问题的手段, 而在高人流密集的场景中, 固定在基站上的边缘服务器可能会因网络过载而无法提供有效的服务. 考虑到时延敏感型的通信需求, 双层无人机(unmanned aerial vehicle, UAV)的高机动性和易部署性成为任务计算卸载的理想选择, 其中配备计算资源的顶层无人机(top-UAV, T-UAV)可以为抓拍现场画面的底层UAV (bottom-UAV, B-UAV)提供卸载服务. B-UAV搭载拍摄装置, 可以选择本地计算或将部分任务卸载给T-UAV进行计算. 文中构建了双层UAV辅助的MEC系统模型, 并提出了一种DDPG-CPER (deep deterministic policy gradient offloading algorithm based on composite prioritized experience replay)新型计算卸载算法. 该算法综合考虑了决策变量的连续性以及在T-UAV资源调度和机动性等约束条件下优化了任务执行时延, 提高了处理效率和响应速度, 以保证现场观众对比赛的实时观看体验. 仿真实验结果表明, 所提算法表现出了比DDPG等基线算法更快的收敛速度, 能够显著降低处理延迟.

    Abstract:

    Mobile edge computing (MEC) has gradually become an effective means of alleviating data overload. However, in highly crowded scenarios, edge servers fixed on base stations may fail to provide efficient services due to network overload. In view of the communication demands of low latency, a dual-layer unmanned aerial vehicle (UAV) with high mobility and easy deployment becomes an ideal choice for task offloading. The top UAV (T-UAV) equipped with computing resources can provide offloading services for the bottom UAV (B-UAV) capturing the on-site scene. The B-UAV equipped with a shooting device can choose to perform local computing or partially offload tasks to T-UAV for computation. In this study, a dual-layer UAV-assisted MEC system model is constructed, and a new offloading algorithm named deep deterministic policy gradient offloading algorithm based on composite prioritized experience replay (DDPG-CPER) is proposed. The algorithm comprehensively considers the continuity of decision variables and optimizes the task execution latency under constraints such as T-UAV resource scheduling and mobility, thus improving processing efficiency and response speed, so as to ensure a real-time viewing experience for on-site spectators. The simulation results show that the proposed algorithm exhibits faster convergence speed than baseline algorithms such as DDPG and can significantly reduce processing latency.

    参考文献
    相似文献
    引证文献
引用本文

徐飞,杨雪,赵前奔.基于深度强化学习的双层无人机边缘卸载策略.计算机系统应用,2023,32(11):267-275

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-25
  • 最后修改日期:2023-05-23
  • 录用日期:
  • 在线发布日期: 2023-08-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号