融合序列分解与Prophet模型的时序预测
作者:

Time Series Prediction Using Series Decomposition and Prophet Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统时序预测方法其预测过程无法在相同数据集上推出共享模式, 而机器学习方法无法较好地处理非线性和大规模数据集, 并且需要手动设计特征工程. 深度学习方法弥补了传统预测方法需要高计算高人力的弊端, 用自动学习特征工程代替了手动设计特征工程. 但仅使用深度学习的预测方法所作结构假设较少, 通常需要较高的计算资源以及大量的数据来学习得到准确的模型. 针对上述问题, 本文提出通过采用融合t检验的EMD经验模态将序列分为高频分量和低频分量, 对高频分量使用传统STL序列分解方法进一步对数据做处理, 对高频、低频分量分别进行Prophet预测. 实验结果表明, 相较于传统的LSTM以及Prophet预测模型, 经过STL序列分解后的周期数据能够提升模型的整体预测精确度而融合EMD经验模态的Prophet模型则大大提升了训练效率.

    Abstract:

    The prediction process of traditional time series prediction methods cannot push out the sharing mode on the same data set, while machine learning methods fail to handle nonlinear and large-scale data sets well, and feature engineering needs to be designed manually. The deep learning method makes up for the disadvantage of the traditional prediction method that requires high computation and high manpower, and it uses automatic learning feature engineering instead of manually designed feature engineering. However, prediction methods that only use deep learning make fewer structural assumptions and typically require higher computational resources and a large amount of data to learn accurate models. In response to the above issues, this study proposes to use empirical mode decomposition (EMD) fusing t-tests to divide the sequence into high-frequency and low-frequency components and further process the data using traditional standard template library (STL) sequence decomposition methods for high-frequency components. The high-frequency and low-frequency components are predicted separately by Prophet. The experimental results show that compared with traditional long short-term memory (LSTM) network and Prophet prediction models, the periodic data decomposed by STL sequence can improve the overall prediction accuracy of the model, while the Prophet model fused with EMD greatly improves training efficiency.

    参考文献
    [1] Kuznetsov V, Mohri M. Theory and algorithms for forecasting time series. arXiv:1803.05814, 2018.
    [2] Li YL, Yu NP, Wang W. Machine learning-driven virtual bidding with electricity market efficiency analysis. IEEE Transactions on Power Systems, 2022, 37(1): 354-364. [doi: 10.1109/TPWRS.2021.3096469
    [3] De Livera AM, Hyndman RJ, Snyder RD. Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 2011, 106(496): 1513-1527. [doi: 10.1198/jasa.2011.tm09771
    [4] Gelper S, Fried R, Croux C. Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting, 2010, 29(3): 285-300. [doi: 10.1002/for.1125
    [5] Ahmed NK, Atiya AF, El Gayar N, et al. An empirical comparison of machine learning models for time series forecasting. Econometric Reviews, 2010, 29(5-6): 594-621.
    [6] Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2194): 20200209. [doi: 10.1098/rsta.2020.0209
    [7] Zhao Z, Chen WH, Wu XM, et al. LSTM network: A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017, 11(2): 68-75. [doi: 10.1049/iet-its.2016.0208
    [8] Li BW, Zhang J, He Y, et al. Short-term load-forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test. IEEE Access, 2017, 5: 16324-16331. [doi: 10.1109/ACCESS.2017.2738029
    [9] Zhang GW, Ren T, Yang YF. A new unified deep learning approach with decomposition-reconstruction-ensemble framework for time series forecasting. arXiv:2002.09695, 2020.
    [10] 赵婷婷, 韩雅杰, 杨梦楠, 等. 基于机器学习的时序数据预测方法研究综述. 天津科技大学学报, 2021, 36(5): 1-9. [doi: 10.13364/j.issn.1672-6510.20200203
    [11] Li CG, Yang B, Li M. Forecasting analysis of shanghai stock index based on ARIMA model. MATEC Web of Conferences, 2017, 100: 02029. [doi: 10.1051/matecconf/201710002029
    [12] Domingos P. The Master Algorithm: How the Quest for the Ultimate Learning Machine will Remake Our World. Basic Books, 2015.
    [13] Franklin J. The elements of statistical learning: Data mining, inference and prediction. The Mathematical Intelligencer, 2005, 27(2): 83-85
    [14] Goodfellow J, Bengio Y, Courville A. Deep learning. Genetic Programming and Evolvable Machines, 2018, 19(1): 305-307
    [15] Wang JS, Chen XH, Zhang F, et al. Building load forecasting using deep neural network with efficient feature fusion. Journal of Modern Power Systems and Clean Energy, 2021, 9(1): 160-169. [doi: 10.35833/MPCE.2020.000321
    [16] 庞传军, 张波, 余建明. 基于LSTM循环神经网络的短期电力负荷预测. 电力工程技术, 2021, 40(1): 175-180, 194
    [17] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780. [doi: 10.1162/neco.1997.9.8.1735
    [18] 魏健, 赵红涛, 刘敦楠, 等. 基于注意力机制的CNN-LSTM短期电力负荷预测方法. 华北电力大学学报, 2021, 48(1): 42-47
    [19] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测. 电网技术, 2020, 44(2): 614-620. [doi: 10.13335/j.1000-3673.pst.2019.1566
    [20] 彭湃, 刘敏. 基于Prophet-LSTM组合模型的短期负荷预测方法. 电力系统及其自动化学报, 2021, 33(11): 15-20. [doi: 10.19635/j.cnki.csu-epsa.000705
    [21] Huan J, Cao WJ, Qin YL. Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework. Computers and Electronics in Agriculture, 2018, 150: 257-265. [doi: 10.1016/j.compag.2018.04.022
    [22] Zhou YR, Li TY, Shi JY, et al. A CEEMDAN and XGBoost-based approach to forecast crude oil prices. Complexity, 2019, 2019: 4392785
    [23] Percival DB, Walden AT. Spectral Analysis for Uunivariate Time Series. Cambridge: Cambridge University Press, 2000. 491.
    [24] Bento PMR, Pombo JAN, Calado MRA, et al. Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting. Neurocomputing, 2019, 358: 53-71. [doi: 10.1016/j.neucom.2019.05.030
    [25] Fan CD, Ding CK, Zheng JH, et al. Empirical mode decomposition based multi-objective deep belief network for short-term power load forecasting. Neurocomputing, 2020, 388: 110-123. [doi: 10.1016/j.neucom.2020.01.031
    [26] 孔祥玉, 李闯, 郑锋, 等. 基于经验模态分解与特征相关分析的短期负荷预测方法. 电力系统自动化, 2019, 43(5): 46-52
    [27] 林昱, 常晋源, 黄雁勇. 融合经验模态分解与深度时序模型的股价预测. 系统工程理论与实践, 2022, 42(6): 1663-1677
    [28] 许江雯, 杨航. 基于X11过程的陕西省月度快递量预测分析. 轻工科技, 2021, 37(11): 102-104
    [29] Sun TH, Zhang TY, Teng Y, et al. Monthly electricity consumption forecasting method based on X12 and STL decomposition model in an integrated energy system. Mathematical Problems in Engineering, 2019, 2019: 9012543
    [30] Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 1998, 14(1): 35-62.
    [31] 张子森, 徐晓钟. 基于分解和多分量集成学习的负荷预测方法. 计算机与现代化, 2023, (3): 96-101, 106
    [32] 李飞宏, 肖迎群. 基于STL-LSTM-TCN模型的短期负荷预测方法. 电子设计工程, 2023, 31(7): 47-51, 56
    [33] 郭利进, 许瑞伟. 时序分解下改进果蝇算法的LSTM在水质预测的应用. 长江科学院院报. http://kns.cnki.net/kcms/detail/42.1171.TV.20221223.1013.003.html. (2022-12-26).
    [34] 赵建东, 朱丹, 刘佳欣. 基于时间序列分解与门控循环单元的地铁换乘客流预测. 华南理工大学学报(自然科学版), 2022, 50(5): 22-31
    [35] 林海飞, 刘时豪, 周捷, 等. 基于STL-EEMD-GA-SVR的采煤工作面瓦斯涌出量预测方法及应用. 煤田地质与勘探, 2022, 50(12): 131-141.
    [36] Cleveland WS, Devlin SJ. Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83(403): 569-610
    [37] Taylor SJ, Letham B. Forecasting at scale. The American Statistician, 2018, 72(1): 37-45. [doi: 10.1080/00031305.2017.1380080
    [38] Li SS, Shen Z, Xiong G. A K-nearest neighbor locally weighted regression method for short-term traffic flow forecasting. Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage: IEEE, 2012. 1596-1601.
    [39] 杨贵军, 李晓霞, 孙玲莉. Prophet-X-12-ARIMA组合模型及交通运输量预测. 统计与决策, 2023, 39(4): 29-34. [doi: 10.13546/j.cnki.tjyjc.2023.04.005
    [40] 齐绍洲, 赵鑫, 谭秀杰. 基于EEMD模型的中国碳市场价格形成机制研究. 武汉大学学报(哲学社会科学版), 2015, 68(4): 56-65. [doi: 10.14086/j.cnki.wujss.2015.04.008
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁美荣,张迎春.融合序列分解与Prophet模型的时序预测.计算机系统应用,2023,32(11):294-301

复制
分享
文章指标
  • 点击次数:824
  • 下载次数: 1700
  • HTML阅读次数: 1684
  • 引用次数: 0
历史
  • 收稿日期:2023-04-21
  • 最后修改日期:2023-05-17
  • 在线发布日期: 2023-09-15
文章二维码
您是第12794702位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号