基于标签噪声鲁棒学习的疾病风险预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省重点研发计划(202102020101009)


Disease Risk Prediction Based on Label Noise Robust Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    疾病风险预测能够筛查易患人群, 并在早期进行预防干预措施以降低疾病的发生率及死亡率. 随着机器学习技术的快速发展, 基于机器学习的疾病风险预测得到了广泛应用. 然而, 机器学习十分依赖于高质量的标注信息, 医疗数据中存在的标签噪声会给构建高性能的疾病风险预测算法带来严峻挑战. 针对这一问题, 本文提出了一种基于深度神经网络和动态截断损失函数的噪声鲁棒学习方法用于疾病风险预测. 该方法引入动态截断损失函数, 融合了传统交叉熵函数的隐式加权特性和均方差损失函数的标签噪声鲁棒性; 通过构造训练损失下界, 并引入样本动态加权机制减小可疑样本的梯度, 限制可能的带噪样本在训练过程中的权重, 进一步增强模型的鲁棒性. 以脑卒中筛查数据集为例进行实验, 结果表明本文算法在各个标签噪声比例下均能取得良好的预测性能, 可降低疾病风险预测中标签噪声的负面影响, 实现了带有标签噪声数据的鲁棒学习.

    Abstract:

    Disease risk prediction enables the screening of vulnerable populations and early preventive interventions to reduce disease incidence and mortality. With the rapid development of machine learning technologies, disease risk prediction based on machine learning has been widely used. However, machine learning is highly dependent on high-quality labeling information, and the label noise in medical data will bring severe challenges to the construction of high-performance disease risk prediction algorithms. In order to solve this problem, a noise robustness learning method based on a deep neural network and dynamic truncation loss function is proposed for disease risk prediction. The dynamic truncation loss function is introduced in this method, which combines the implicit weighting characteristics of the traditional cross entropy function and the label noise robustness of the mean square error loss function. By constructing a training loss lower bound and introducing a dynamic sample weighting mechanism to reduce the gradient of suspicious samples, the weight of possible noisy samples in the training process is limited, and the robustness of the model is further enhanced. By taking the stroke screening dataset as an example, the experimental results show that the proposed algorithm can achieve excellent prediction performance under each ratio of label noises, reduce the negative impact of label noises in disease risk prediction, and realize robust learning of data with label noises.

    参考文献
    相似文献
    引证文献
引用本文

郭雨茜,李华玲.基于标签噪声鲁棒学习的疾病风险预测.计算机系统应用,2023,32(10):184-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-17
  • 最后修改日期:2023-04-20
  • 录用日期:
  • 在线发布日期: 2023-08-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号