基于编程认知诊断模型的学生表现预测
作者:
基金项目:

北京化工大学校级教改项目(2021BHDJGYB16, G-JG-PTKC202107)


Student Performance Prediction Based on Cognitive Diagnosis Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来, 学生认知诊断是教育数据挖掘领域的重要研究课题, 对现代教育的精准反馈有重要的意义. 然而, 传统的认知诊断模型存在预测准确性低和处理大规模数据时效率低等问题, 且现有研究主要围绕传统线下教学展开, 缺少针对程序设计教育领域的研究. 为了解决上述问题, 本文从程序设计教育的特点分析出发, 提出了一种基于编程表现的模糊认知诊断模型P-FuzzyCDF (programming-performance-based fuzzy cognitive diagnosis framework). 具体来说, 为了处理编程题部分正确的情况, 该模型首先模糊了学生对知识点的掌握情况. 随后, P-FuzzyCDF将模糊集合理论与教育假设相结合, 对学生对问题的掌握情况进行了建模. 除此之外, 本文还考虑抄袭因素, 并最终生成学生在每个问题上的得分. 值得注意的是, 该模型利用编程教育数据可视化和精确性的特点, 对模型中每个部分的参数进行了量化. 本文基于真实数据集进行实验, 实验结果表明P-FuzzyCDF可以实现较高的精度, 其中MAEMSERMSE评估指标的值分别为0.07、0.09和0.01. 此外, 将P-FuzzyCDF与现有经典方法(如DINA, IRT和FuzzyCDF)进行比较时, P-FuzzyCDF的结果在MAEMSERMSE等指标上取得了明显优势.

    Abstract:

    In recent years, student cognitive diagnosis has been an important research topic in educational data mining, which is of great significance for accurate feedback in modern education. However, traditional cognitive diagnosis models have problems such as low prediction accuracy and low efficiency when dealing with large-scale data. Moreover, the existing research is mainly focused on traditional offline teaching and learning, and more research is needed in programming education. To solve the above problems, a programming-performance-based fuzzy cognitive diagnosis framework (P-FuzzyCDF) is proposed from the analysis of the characteristics of programming education. First, to deal with the case of partially correct programming questions, the model fuzzes the students’ mastery of the knowledge points. Second, fuzzy set theory is combined with educational assumptions to model student mastery of the questions. Finally, students’ scores on each problem are generated by considering plagiarism factors. Notably, the model takes advantage of the visualization and accuracy of programming education data to quantify the parameters for each model component. Experiments are conducted based on real data sets, and the results show that P-FuzzyCDF can achieve high accuracy, where the values of MAE, MSE, and RMSE assessment indexes are 0.07, 0.09, and 0.01, respectively. In addition, when comparing P-FuzzyCDF with existing classical methods such as DINA, IRT, and FuzzyCDF, the results of P-FuzzyCDF are significantly better than these methods in terms of MAE, MSE, and RMSE.

    参考文献
    [1] Xu CJ, Zhu GB, Ye J, et al. Educational data mining: Dropout prediction in XuetangX MOOCs. Neural Processing Letters, 2022, 54(4): 2885–2900. [doi: 10.1007/s11063-022-10745-5
    [2] 刘淇, 陈恩红, 朱天宇, 等. 面向在线智慧学习的教育数据挖掘技术研究. 模式识别与人工智能, 2018, 3(1): 77–90
    [3] Zhou SQ, Traynor A. Measuring students’ learning progre-ssions in energy using cognitive diagnostic models. Frontiers in Psychology, 2022, 13: 892884. [doi: 10.3389/fpsyg.2022.892884
    [4] 江培超, 王川, 胡富珍, 等. 基于阅读认知诊断的学生表现预测. 计算机工程与应用, 2022, 58(11): 160–170
    [5] 李忧喜, 文益民, 易新河, 等. 一种改进的模糊认知诊断模型. 数据采集与处理, 2017, 32(5): 958–969
    [6] Liu Q, Wu RZ, Chen EH, et al. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Transactions on Intelligent Systems and Technology, 2018, 9(4): 1–26
    [7] Liu J, Tang WS, He XP, et al. Research on DINA model in online education. Proceedings of the 6th International Conference on E-learning, E-education, and Online Training. Changsha: Springer, 2020. 279–291.
    [8] Wang F, Liu Q, Chen EH, et al. Neural cognitive diagnosis for intelligent education systems. Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, and the 10th AAAI Symposium on Educational Advances in Artificial Intelligence. New York: AAAI Press, 2020. 6153–6161.
    [9] 范士青, 刘华山. 常见的认知诊断模型及其比较. 教育测量与评价, 2015, (7): 4–9
    [10] Tatsuoka K K. Rule Space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 1983, 20(4): 345–354. [doi: 10.1111/j.1745-3984.1983.tb00212.x
    [11] De La Torre J, Minchen N. Cognitively diagnostic assessments and the cognitive diagnosis model framework. Psicología Educativa, 2014, 20(2): 89–97
    [12] 张兆远, 陶剑. 项目反应理论(IRT)甄选试题方法研究. 伊犁师范学院学报(自然科学版), 2018, 12(3): 10–14
    [13] Janssen R, Tuerlinckx F, Meulders M, et al. A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 2000, 25(3): 285–306. [doi: 10.3102/10769986025003285
    [14] 刘彦楼, 辛涛, 田伟. 项目反应理论与认知诊断模型的参数估计: 模型整合视角. 北京师范大学学报(自然科学版), 2017, 53(6): 742–748. [doi: 10.16360/j.cnki.jbnuns.2017.06.017
    [15] Wu RZ, Liu Q, Liu YP, et al. Cognitive modelling for predicting examinee performance. Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015. 1017–1024.
    [16] 蔡艳, 赵洋, 刘舒畅, 等. 一种优化的多级评分认知诊断模型. 心理科学, 2017, 40(6): 1491–1497. [doi: 10.16719/j.cnki.1671-6981.20170632
    [17] 刘彬彬. 几种基于IRT (项目反应理论)模型的参数估计方法研究. 硅谷, 2010, (22): 80
    [18] Yamaguchi K, Okada K. Hybrid cognitive diagnostic model. Behaviormetrika, 2020, 47(2): 497–518. [doi: 10.1007/s41237-020-00111-x
    [19] 熊超, 马华. 结合认知诊断和答题行为分析的试题推荐方法. 计算机时代, 2022, (12): 85–88
    [20] Divine G, Norton HJ, Hunt R, et al. A review of analysis and sample size calculation considerations for Wilcoxon tests. Anesthesia & Analgesia, 2013, 117(3): 699–710
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张雨婷,李征,刘勇,吴永豪.基于编程认知诊断模型的学生表现预测.计算机系统应用,2023,32(9):239-247

复制
分享
文章指标
  • 点击次数:743
  • 下载次数: 1665
  • HTML阅读次数: 1209
  • 引用次数: 0
历史
  • 收稿日期:2023-02-10
  • 最后修改日期:2023-04-07
  • 在线发布日期: 2023-07-14
文章二维码
您是第12823327位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号