基于层次信息融合的声学场景分类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62006098); 中国博士后科学基金(2020M681515)


Acoustic Scene Classification Based on Hierarchical Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    声学场景分类技术可以通过在公共区域中录制的音频分析出它的录制环境, 在日常生活中发挥着重要的作用. 与传统分类问题类与类之间没有关系不同, 声学场景分类的类别间存在着层次结构关系(父类与子类), 如机场和购物中心的父类为室内. 而现有的方法在设计时并未考虑声学场景分类任务的这一特性, 忽略了父类和子类间的依赖关系. 因此, 本文利用声学场景类别间的层次结构关系, 提出了一种基于层次信息融合的声学场景分类方法. 该方法为父类和子类分别设计了单独的分类器, 在子类分类的过程中融合了父类的信息, 并设计了层次依赖损失来对预测的父类和子类不匹配的情况进行惩罚. 在TAU城市声学场景2020移动开发数据集上的实验结果表明, 基于层次信息融合的方法有效地提升了声学场景分类模型的性能, 分类准确率提升了1.1%.

    Abstract:

    Acoustical scene classification technology plays an important role in daily life by analyzing its recording environment through the audio recorded in public areas. Different from the traditional classification problem in which there is no relationship between classes, there is an implicit hierarchical structure relationship between the classes of acoustic scene classification (parent class and subclass). For example, the parent class of the airport and shopping mall is indoor. However, the existing methods do not consider this characteristic of acoustic scene classification task and ignore the dependency relationship between the parent class and the subclass. Therefore, an acoustic scene classification method is proposed, which is based on hierarchical information fusion by using the hierarchical structure relationship between acoustic scene classes. In this method, two separate classifiers are designed to classify the parent class and the subclass respectively. The information of the parent class is fused in the process of the subclass classification, and the hierarchical dependency loss is designed to punish the predicted mismatch between the parent class and the subclass. The experimental results on TAU urban acoustic scenes 2020 mobile development dataset show that the method based on hierarchical information fusion effectively improves the performance of the acoustic scene classification model with an increase of 1.1% in classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

江港,马忠臣.基于层次信息融合的声学场景分类.计算机系统应用,2023,32(10):140-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-22
  • 最后修改日期:2023-04-28
  • 录用日期:
  • 在线发布日期: 2023-07-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号