网络嵌入随机块模型的社区发现和链路预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (71771201)


Community Detection and Link Prediction Based on Network Embedding Stochastic Blockmodel
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    社区发现与链路预测任务是网络数据研究中的热点问题, 兼顾网络传递性与区块结构有助于捕捉个体之间的有效关联、探测数据中蕴含的内在规律, 帮助研究者挖掘更多数据价值进而做出决策. 当前的算法与模型多侧重于网络传递性或区块结构单一层面的分析, 且依赖一定的假设条件. 本文提出网络嵌入随机块模型(NE-SBM)用于社区发现与链路预测. 搭建贝叶斯框架完成模型参数的正则化, 利用Metropolis Hasting-Gibbs算法获得节点嵌入表示的隐位置与社区隶属关系, 基于多维尺度变换算法解决隐位置可识别性问题. 本方法可解决传统启发式算法中过分依赖判断准则或评价函数的问题, 对各类型的数据都具有更好的适应性. 人工数据及真实数据的实验结果进一步验证了该方法在社区发现与链路预测中有更优的表现.

    Abstract:

    Community detection and link prediction are hot issues in network data research. Taking into account both network transitivity and block structure can help capture the effective association between individuals and detect the inherent patterns in the data, thus helping researchers explore more data values and make decisions. Most of the current algorithms and models focus on single-level analysis of network transitivity or block structure, and they rely on certain assumptions This study proposes a network embedding stochastic blockmodel (NE-SBM) for community detection and link prediction. A Bayesian framework is built to regularize the model parameters, and the Metropolis Hasting-Gibbs algorithm is applied to obtain the hidden location and community affiliation represented by node embedding. The study also takes advantage of the multidimensional scaling algorithm to solve the hidden location identifiability problem. The proposed method can solve the problem of over-reliance on judgment criterion or evaluation function in traditional heuristic algorithms and has better adaptability to all types of data. In addition, the experimental results on artificial and real data further validate the superior performance of the method in community detection and link prediction.

    参考文献
    相似文献
    引证文献
引用本文

刘杰,丁靖芝.网络嵌入随机块模型的社区发现和链路预测.计算机系统应用,2023,32(10):265-274

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-17
  • 最后修改日期:2023-04-20
  • 录用日期:
  • 在线发布日期: 2023-07-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号