面向柔性作业车间调度的多策略鲸鱼优化算法
作者:
基金项目:

辽宁省教育厅高等学校基本科研项目(LJKQZ2021164)


Multi-strategy Whale Optimization Algorithm for Flexible Job Shop Scheduling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以某大型家具企业的柔性生产制造过程中调度问题为研究对象, 提出了一种主要用于求解柔性作业车间调度问题的多策略鲸鱼优化算法(multi-strategy whale optimization algorithm, MWOA), 首先, 为了提高初始种群的多样性, 引入混沌理论来初始化种群; 同时设计了非线性收敛因子和自适应惯性权重系数来平衡全局探索和局部开发能力; 然后结合差分进化(differential evolution, DE)算子提高了WOA的利用和搜索能力, 最后采取最优个体混沌搜索策略, 减少WOA算法出现早熟收敛现象的概率. 以最小化最大完工时间为求解目标, 对基准测试问题与某家具企业的生产制造过程的调度优化问题进行了求解, 结果表明提出来的多策略鲸鱼优化算法克服了基本鲸鱼优化算法寻优精度低、收敛速度慢及容易陷入局部最优等缺陷, 与对比算法比较, 取得了更好的寻优效果.

    Abstract:

    Taking the scheduling problem in the flexible manufacturing of a large furniture enterprise as the research object, this study proposes a multi-strategy whale optimization algorithm (MWOA), which is mainly used to solve the flexible job shop scheduling problem. First, in order to improve the diversity of the initial population, chaos theory is introduced to initialize the population; at the same time, the nonlinear convergence factor and adaptive inertia weight coefficient are designed to balance the global exploration and local development capabilities; then the differential evolution (DE) operator is used to improve the utilization and search ability of WOA. Finally, the optimal individual chaotic search strategy is adopted to reduce the probability of premature convergence of WOA. With the objective of minimizing the maximum completion time, the benchmark test problem and the scheduling optimization problem of the manufacturing process of a furniture enterprise are solved. The results show that MWOA overcomes the shortcomings of the basic WOA, such as low optimization accuracy, slow convergence speed, and easy falling into local optimization. Compared with the comparison algorithm, MWOA achieves better optimization results.

    参考文献
    [1] 屈新怀, 纪飞, 孟冠军, 等. 超启发式遗传算法柔性作业车间绿色调度问题研究. 机电工程, 2022, 39(2): 255–261. [doi: 10.3969/j.issn.1001-4551.2022.02.017
    [2] 王玉芳, 缪昇, 葛嘉荣. 面向柔性作业车间调度的改进混合蛙跳算法. 组合机床与自动化加工技术, 2022, 579(5): 187–192. [doi: 10.13462/j.cnki.mmtamt.2022.05.045
    [3] 杜晓亮, 张楠, 孟凡云, 等. 改进NSGA2算法求解柔性作业车间调度问题. 组合机床与自动化加工技术, 2022, 579(5): 182–186. [doi: 10.13462/j.cnki.mmtamt.2022.05.044
    [4] Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51–67. [doi: 10.1016/j.advengsoft.2016.01.008
    [5] 徐伟民, 邬剑升, 余数, 等. 交叉熵鲸鱼算法的制冷机组能效优化. 重庆理工大学学报(自然科学), 2022, 36(9): 137–145. [doi: 10.3969/j.issn.1674-8425(z).2022.09.017
    [6] 路雪刚, 张雪花, 张梦桃. 基于改进鲸鱼优化算法的畜禽废弃物运输路径优化问题. 科学技术与工程, 2022, 22(25): 11120–11129. [doi: 10.3969/j.issn.1671-1815.2022.25.038
    [7] 李宏玉, 毛泉, 祁忠伟, 等. 基于鲸鱼算法优化PNN的变压器故障诊断. 电气自动化, 2022, 44(4): 102–104. [doi: 10.3969/j.issn.1000-3886.2022.04.030
    [8] 郝晓弘, 宋吉祥, 周强, 等. 混合策略改进的鲸鱼优化算法. 计算机应用研究, 2020, 37(12): 3622–3626, 3655. [doi: 10.19734/j.issn.1001-3695.2019.09.0528
    [9] 何庆, 魏康园, 徐钦帅. 基于混合策略改进的鲸鱼优化算法. 计算机应用研究, 2019, 36(12): 3647–3651, 3665. [doi: 10.19734/j.issn.1001-3695.2018.07.0382
    [10] 王坚浩, 张亮, 史超, 等. 基于混沌搜索策略的鲸鱼优化算法. 控制与决策, 2019, 34(9): 1893–1900. [doi: 10.13195/j.kzyjc.2018.0098
    [11] Kaur G, Arora S. Chaotic whale optimization algorithm. Journal of Computational Design and Engineering, 2018, 5(3): 275–284. [doi: 10.1016/j.jcde.2017.12.006
    [12] 姜天华. 混合灰狼优化算法求解柔性作业车间调度问题. 控制与决策, 2018, 33(3): 503–508. [doi: 10.13195/j.kzyjc.2017.0124
    [13] Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution—An updated survey. Swarm and Evolutionary Computation, 2016, 27: 1–30. [doi: 10.1016/j.swevo.2016.01.004
    [14] Brandimarte P. Routing and scheduling in a flexible job shop by Tabu search. Annals of Operations Research, 1993, 41(3): 157–183. [doi: 10.1007/BF02023073
    [15] Henchiri A, Ennigrou M. Particle swarm optimization combined with Tabu search in a multi-agent model for flexible job shop problem. Proceedings of the 4th International Conference on Advances in Swarm Intelligence. Harbin: Springer, 2013. 385–394.
    [16] 刘婉莹. 蚁群优化算法在柔性作业车间调度中的应用[硕士学位论文]. 哈尔滨: 东北林业大学, 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

亓祥波,陈阳,郑铭.面向柔性作业车间调度的多策略鲸鱼优化算法.计算机系统应用,2023,32(9):154-161

复制
分享
文章指标
  • 点击次数:815
  • 下载次数: 1945
  • HTML阅读次数: 1232
  • 引用次数: 0
历史
  • 收稿日期:2023-02-20
  • 最后修改日期:2023-03-20
  • 在线发布日期: 2023-06-09
文章二维码
您是第12821909位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号