基于IPSO-FHMM的非侵入式负荷分解
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (62273066); 重庆市教委科技项目重大项目(KJZD-M202100701); 重庆市高校创新研究群体项目 (CXQT21021); 重庆市研究生联合培养基地项目 (JDLHPYJD2021016)


Non-intrusive Load Disaggregation Based on IPSO-FHMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非侵入式负荷分解是智能用电系统的一个重要环节, 可深入分析用户的用电信息, 对负荷预测、需求侧管理及电网安全有重要意义. 本文提出了一种基于改进粒子群优化因子隐马尔可夫模型(IPSO-FHMM)的非侵入式负荷分解方法. 利用高斯混合模型 (GMM) 对单负荷进行状态聚类, 总负载模型由因子隐马尔可夫模型表示. 针对 Baum-Welch算法容易收敛于局部极值的问题, 将线性递减权重的粒子群优化算法引入到 FHMM 的参数训练中. 使用AMPds2数据集进行仿真实验, 结果表明, 该模型可以有效地提高分解精度.

    Abstract:

    Non-intrusive load decomposition is an important part of the intelligent power consumption system, which can deeply analyze the power consumption information of users and is of great significance to load forecasting, demand side management, and power grid security. This study proposes a non-intrusive load decomposition method based on the improved particle swarm optimization factorial hidden Markov model (IPSO-FHMM). Gaussian mixture model (GMM) is used to cluster the states of individual loads. The total load model is represented by an FHMM. Since the Baum-Welch algorithm tends to converge to the local extremum, the PSO algorithm with linearly decreasing weights is introduced into the parameter training of FHMM. Simulation experiments using the AMPds2 dataset show that the model can effectively improve the decomposition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李岢淳,李兵.基于IPSO-FHMM的非侵入式负荷分解.计算机系统应用,2023,32(8):214-220

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-03
  • 最后修改日期:2023-03-08
  • 录用日期:
  • 在线发布日期: 2023-05-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号