基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划 (2021YFC3000302)


Super-resolution Reconstruction of Remote Sensing Images Based on Multi-scale Feature Extraction and Coordinate Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对现有光学遥感图像超分辨率重建模型对感受野尺度关注不足和对特征通道信息提取不充分带来的问题, 提出了一种基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建模型. 该重建模型基于深度残差网络结构, 在网络的高频分支中设计了多个级联的多尺度特征和坐标注意力模块 (multi-scale feature & coordinate attention block, MFCAB), 对输入的低分辨率光学遥感图像的高频特征进行充分发掘: 首先, 在MFCAB模块中引入Inception子模块, 使用不同尺度的卷积核捕捉不同感受野下的空间特征; 其次, 在Inception子模块后增加坐标注意力子模块, 同时关注通道与坐标两个维度, 以获得更好的通道注意力效果; 最后, 对各MFCAB模块提取的特征进行多路径融合, 实现多重多尺度空间信息与通道注意信息的有效融合. 本文模型在NWPU4500数据集上2倍、3倍放大中PSNR值达到34.73 dB和30.12 dB, 较EDSR分别提升0.66 dB和0.01 dB, 在AID1600数据集上2倍、3倍、4倍放大中PSNR值达到34.71 dB、30.58 dB、28.44 dB, 较EDSR分别提升0.09 dB、0.03 dB、0.04 dB. 实验结果表明, 该模型在光学遥感图像数据集上的重建效果优于主流的图像超分辨率重建模型.

    Abstract:

    Considering the problems caused by insufficient attention to receptive field scale and inadequate extraction of feature channel information in existing super-resolution reconstruction models for optical remote sensing images, this study proposes a new super-resolution reconstruction model for optical remote sensing images, which is based on multi-scale feature extraction and coordinate attention. On the basis of the deep residual network structure, some cascaded multi-scale feature & coordinate attention blocks (MFCABs) are designed in the high-frequency branch of the network to fully explore the high-frequency features of the input low-resolution images. Firstly, the Inception submodule is introduced into MFCABs to capture spatial features under different receptive fields by convolution kernels of different scales. Secondly, the coordinate attention submodule is added after the Inception submodule, and attention is paid to the channel and coordinate dimensions to obtain a better channel attention effect. Finally, the features extracted by each MFCAB are fused in multiple paths to realize the effective fusion of multi-scale spatial information and multi-channel attention information. In the double and triple magnification of the MFCAB model on the NWPU4500 dataset, the PSNR reaches 34.73 dB and 30.12 dB, respectively, which is 0.66 dB and 0.01 dB higher than EDSR. In the double, triple, and quadruple magnification of the model on the AID1600 dataset, the PSNR reaches 34.71 dB, 30.58 dB, and 28.44 dB, respectively, which is 0.09 dB, 0.03 dB, and 0.04 dB higher than EDSR. The experimental results show that the reconstruction effect of this model on the optical remote sensing image datasets is better than the mainstream super-resolution image reconstruction model.

    参考文献
    相似文献
    引证文献
引用本文

肖子安,张静,苑馨方,朱家佳,李晓辉,米琳,窦帅.基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建.计算机系统应用,2023,32(7):105-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-28
  • 最后修改日期:2023-01-20
  • 录用日期:
  • 在线发布日期: 2023-05-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号