摘要:在当前自然语言处理多意图识别模型研究中, 存在建模方式均为从意图到插槽的单一方向的信息流建模, 忽视了插槽到意图的信息流交互建模研究, 意图识别任务易于混淆且错误捕获其他意图信息, 上下文语义特征提取质量不佳, 有待进一步提升等问题. 本文以当前先进的典型代表GL-GIN模型为基础, 进行优化改进, 探索了插槽到意图的交互建模方法, 运用槽到意图的单向注意力层, 计算插槽到意图的注意力得分, 纳入注意力机制, 利用插槽到意图的注意力得分作为连接权重, 使其可以传播和聚集与意图相关的插槽信息, 使意图重点关注与其相关的插槽信息, 从而实现多意图识别模型的双向信息流动; 同时, 引入BERT模型作为编码层, 以提升了语义特征提取质量. 实验表明, 该交互建模方法效果提升明显, 与原GL-GIN模型相比, 在两个公共数据集(MixATIS和MixSNIPS)上, 新模型的总准确率分别提高了5.2%和9%.