摘要:医学三维图像(如CT、MRI等)和二维图像(如X光)的配准技术已经被广泛应用于临床诊断和手术规划中. 医学图像配准的实质为使用优化算法寻找某种空间变换, 使两张图像在空间以及结构上对齐. 配准过程中往往由于优化算法寻优精度不高、易陷入局部极值的问题导致配准质量低. 针对此问题, 提出一种改进的平衡优化器算法(improved equilibrium optimizer based on Logistic-Tent chaos map and Levy flight, LTEO), 首先针对种群初始化容易分布不均匀, 且随机性太高的问题, 引入Logistic-Tent混沌映射对种群进行初始化, 提高种群多样性, 使它们尽可能地分布于搜索空间内; 对迭代函数进行更新, 使得优化算法更注重全局范围的搜索, 提高算法收敛速度并利于找到全局最优解; 引入Levy飞行策略对停滞粒子进行扰动, 防止算法陷入局部极值. 最后将改进的平衡优化器算法用于2D/3D医学图像配准任务, 并对配准过程中数据的频繁传输进行优化, 降低配准耗时. 通过基准函数测试和临床配准实验对算法进行验证, 改进后的平衡优化器可有效提高寻优精度和稳定性, 并提高医学图像配准的质量.