基于ECA的YOLOv5水下鱼类目标检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62073196); NSFC-山东联合基金(U1806204)


ECA-based YOLOv5 Underwater Fish Target Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下图像模糊、颜色失真, 水下场景环境复杂、目标特征提取能力有限等导致的水下鱼类目标检测精确度低的问题, 提出一种基于YOLOv5的改进水下鱼类目标检测算法. 首先, 针对水下图像模糊、颜色失真的问题, 引入水下暗通道优先 (underwater dark channel prior, UDCP)算法对图像进行预处理, 有助于在不同环境下正确识别目标; 然后, 针对水下场景复杂、目标特征提取能力有限问题, 在YOLOv5网络中引入高效的相关性通道 (efficient channel attention, ECA), 增强对目标的特征提取能力; 最后, 对损失函数进行改进, 提高目标检测框的准确度. 通过实验证明改进后的YOLOv5在水下鱼类目标检测中精确度比原始的YOLOv5提高了2.95%, 平均检测精度(mAP@0.5:0.95)提高了5.52%.

    Abstract:

    To address the low accuracy of underwater fish target detection caused by blurred and color-distorted underwater images, complex underwater scenes, and limited target feature extraction ability, this study proposes an improved underwater fish target detection algorithm based on YOLOv5. Firstly, in response to the blurring and color distortion of underwater images, the underwater dark channel prior (UDCP) algorithm is introduced to pre-process the images, which is helpful for correctly identifying the target in different environments. Then, considering the problems of complex underwater scenes and limited target feature extraction ability, the study introduces an efficient correlation channel, i.e., efficient channel attention (ECA), into the YOLOv5 network to enhance the feature extraction ability of the target. Finally, the loss function is improved to enhance the accuracy of the target detection box. Experiments show that the accuracy of the improved YOLOv5 in underwater fish target detection is 2.95% higher than that of the original YOLOv5, and the average detection accuracy (mAP@0.5:0.95) is increased by 5.52%.

    参考文献
    相似文献
    引证文献
引用本文

曹建荣,庄园,汪明,韩发通,郑学汉,高鹤.基于ECA的YOLOv5水下鱼类目标检测.计算机系统应用,2023,32(6):204-211

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-06
  • 最后修改日期:2023-01-06
  • 录用日期:
  • 在线发布日期: 2023-04-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号