深度学习下的病媒蚊虫分类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

海南省自然科学基金(822RC713)


Classification of Vector Mosquitoes under Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蚊虫是多种疾病的传播媒介, 对病媒蚊虫的监测是预防蚊媒疾病的关键, 针对传统病媒蚊虫的人工鉴定方法成本较高且效率低下, 提出深度学习下的病媒蚊虫分类方法, 基于迁移学习, 微调(fine-tuning) ResNet18、DenseNet121、MobileNetV2这3种ImageNet预训练模型, 在900张少量蚊虫数据集下采用K折交叉验证, 对埃及伊蚊、白纹伊蚊、库蚊3种蚊虫进行分类, 评估模型性能, 平均峰值准确率分别达到了95%、97%、97%. 最后, 利用在900张蚊虫数据集下重新训练后的模型, 对344张蚊虫图像进行预测, 其中轻量化模型MobileNetV2达到了最高0.95的精准率(precision)、召回率(recall)、F1 score. 结合3种模型的最终预测准确率, 得出轻量化的模型MobileNetV2在少量数据集下表现更优. 实验改变了以往的模型微调方式, 通过设置模型分类层学习率为前层学习率的10倍, 与前人实验相比, 对白纹伊蚊的预测准确率提高了5%–6%, 解决了少量数据样本的训练收敛问题, 进一步拓展了病媒蚊虫识别的适用环境.

    Abstract:

    Mosquitoes are the transmission media of various diseases. The monitoring of vector mosquitoes is the key to preventing mosquito-borne diseases. Traditional manual identification methods of vector mosquitoes have high costs and low efficiency. Therefore, a classification method of vector mosquitoes under deep learning is proposed, which is based on transfer learning and three ImageNet pre-training models including fine-tuning ResNet18, DenseNet121, and MobileNetV2. K-fold cross-validation is adopted under small data sets with 900 mosquito images, and Aedes aegypti, Aedes albopictus, and Culex mosquitoes are classified to evaluate model performance. The average peak accuracy reaches 95%, 97%, and 97%, respectively. Finally, 344 mosquito images are predicted by using the model retrained under the data sets with 900 mosquito images. Specifically, the lightweight model MobileNetV2 achieves the highest precision, recall, and F1 score all of 0.95. According to the final prediction accuracy of the three models, it is concluded that the lightweight model MobileNetV2 performs better under a small number of data sets. The experiment changes the previous model fine-tuning modes. The learning rate of the model classification layer is set to be 10 times that of the previous layer, and the prediction accuracy of Aedes albopictus is improved by 5%–6% compared with previous experiments, which solves the training convergence problem of a small number of data samples and further expands the applicable environment for vector mosquito recognition.

    参考文献
    相似文献
    引证文献
引用本文

周永新,余本国.深度学习下的病媒蚊虫分类.计算机系统应用,2023,32(5):234-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-12
  • 最后修改日期:2022-11-14
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号