基于改进1DCNN-SAGRU模型的渔船作业方式识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

农业部水产养殖数字建设试点项目(2017-A2131-130209-K0104-004);青岛市创新创业领军人才(15-07-03-0030);国家自然科学基金(61806107)


Recognition of Fishing Vessel Operation Mode Based on Improved 1DCNN-SAGRU Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海洋渔业领域中渔船轨迹数据具有时空性和非平稳性的特点, 针对目前渔船作业方式识别方法存在对数据信息提取不充分及识别精度低的问题, 提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1DCNN)和加入自注意力(self-attention)的门控循环单元网络(gated recurrent unit, GRU)的渔船作业方式识别模型(1DCNN-SAGRU). 模型利用一维CNN和GRU充分提取渔船轨迹数据的局部空间特征和时序上的依赖关系, 并引入自注意力机制强化模型对关键信息的关注能力. 最后引入dropout方法和RAdam优化器对模型进行改进和优化, 防止模型过拟合的同时加快网络的收敛速度和输出准确性. 经实验和分析表明, 相较于其他对比模型, 该模型在准确率上最高可提升4.4个百分点, 说明该模型能更准确地识别渔船拖网、围网和刺网作业, 有利于加强渔船监管能力和渔业资源的保护.

    Abstract:

    The trajectories of fishing vessels in the field of marine fisheries are spatiotemporal and non-stationary. Considering the problems of insufficient data extraction and low recognition accuracy in the current operation mode recognition methods for fishing vessels, an operation mode recognition model for fishing vessels, i.e., 1DCNN-SAGRU, is proposed. This model is based on the one-dimensional convolutional neural network (1DCNN) and the gated recurrent unit (GRU) network with self-attention. The model uses 1DCNN and GRU to fully extract local spatial features and temporal dependencies of the trajectory data of fishing vessels. In addition, the self-attention mechanism is introduced to strengthen the model’s ability to focus on key information. Finally, the dropout method and the RAdam optimizer are introduced to improve and optimize the model, which can prevent the overfitting of the model, speed up the convergence, and raise the output accuracy of the network. Experiments and analysis show that compared with the accuracy of other comparative models, the accuracy of this model can be improved by up to 4.4 percentage points. This indicates that the model can more accurately identify the trawl, purse seine, and gill net operations of fishing vessels, which is conducive to strengthening the regulatory capacity of fishing vessels and the protection of fishery resources.

    参考文献
    相似文献
    引证文献
引用本文

付建浩,李海涛,张俊虎.基于改进1DCNN-SAGRU模型的渔船作业方式识别.计算机系统应用,2023,32(5):149-156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-07
  • 最后修改日期:2022-11-04
  • 录用日期:
  • 在线发布日期: 2023-02-10
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号