摘要:为对半导体晶圆的表面缺陷进行快速检测, 提出一种基于深度可分离卷积和注意力机制的轻量级网络, 并在WM-811K数据集上进行了实验. 为解决该数据集中9种不同类别的缺陷比例相对不平衡问题, 采用了数据增强方法对较少数据的缺陷类别进行数据扩充. 本文模型中的深度可分离卷积可以降低模型的参数量, 提高模型的推理速度; 注意力机制可以使模型更加关注晶圆图像中有缺陷的区域, 使模型达到更好的分类效果. 实验表明, 所提方法在WM-811K数据集上的平均准确率高达96.5%, 相对于ANN、VGG16、MobileNetv2等方法均有不同程度的提高, 并且参数量和运算量只是经典轻量级网络MobileNetv2的73.5%和28.6%.