融合变道意图识别的车辆轨迹预测GAN模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划 (2018YFB1600800)


GAN Model of Vehicle Trajectory Prediction Based on Lane Changing Intention Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆轨迹预测能够有效降低车辆轨迹突变造成的碰撞风险, 是实现安全驾驶的关键技术之一. 针对传统轨迹预测算法缺乏对驾驶员意图分析的问题, 本文提出了一种融合生成对抗网络和驾驶意图识别的车辆轨迹预测模型. 该模型基于生成对抗网络框架预测车辆轨迹, 并引入基于深度神经网络的变道意图识别模块识别驾驶员的变道意图. 通过在公开数据集NGSIM上与LSTM、S-LSTM、CS-LSTM和S-GAN模型进行对比试验, 实验结果表明与其他轨迹预测模型相比, 本文提出的CS-DNN-GAN模型具有较好的预测精确度.

    Abstract:

    Vehicle trajectory prediction can effectively reduce the collision risk caused by the sudden change of a vehicle trajectory, which is one of the key technologies to achieve safe driving. To address the problem that the traditional trajectory prediction algorithm lacks the analysis of the driver’s intention, this study proposes a vehicle trajectory prediction model that integrates generative adversarial networks and driving intention recognition. The model predicts vehicle trajectories under a generative adversarial network framework and introduces a deep neural network-based lane change intention recognition module to identify the driver’s lane change intention. A comparison test with LSTM, S-LSTM, CS-LSTM and S-GAN models is carried out on the public data set NGSIM. The experimental results show that compared with other trajectory prediction models, the CS-DNN-GAN model proposed in this study has better prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王雪阳,刘茜.融合变道意图识别的车辆轨迹预测GAN模型.计算机系统应用,2023,32(4):354-360

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-29
  • 最后修改日期:2022-09-30
  • 录用日期:
  • 在线发布日期: 2022-12-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号